期刊文献+

喷嘴长宽比和雷诺数对旋流冷却流动与传热特性的影响 被引量:10

Effects of Jet Nozzle Aspect Ratio and Reynolds Number on Flow and Heat Transfer Characteristics of Vortex Cooling
下载PDF
导出
摘要 针对叶片前缘冷却流动与传热问题,建立了合理的旋流腔冷却结构。通过求解三维稳态RANS方程和标准k-ω湍流模型,数值分析了喷嘴长宽比和雷诺数对旋流冷却流动和传热的影响。基于数值计算结果对无量纲传热系数Nu、喷嘴长宽比Car和雷诺数Re进行方程拟合,得到旋流冷却的传热关联式。结果表明:冷气从喷嘴进口切向射入旋流腔并形成高速旋流,显著增强换热;随着喷嘴长宽比从0.2增大到9,旋流外区面积、冷气速度和冷气湍流动能先减小后增大,冷气压力系数先增大后减小;在大喷嘴长宽比时,Nu沿旋流腔周向和轴向的分布较为均匀;随着雷诺数的增大,冷气在旋流腔中的流动结构不变,而冷气速度、湍流动能、压力系数和壁面Nu均显著增大;平均Nu随着雷诺数的增大而显著增大,随着喷嘴长宽比的增大先减小然后增大;传热关联式与数值计算结果的误差在10%以内,可以准确预测旋流冷却的换热系数。 A proper vortex chamber structure is established in terms of blade leading edge cooling.The influence of jet nozzle aspect ratio and Reynolds number on flow field and heat transfer characteristics of vortex cooling is numerically analyzed by means of 3-D steady RANS equations coupled with standard k-ωturbulence model.Based on numerical data,the heat transfer correlations are summarized with respect to the Nusselt number,jet nozzle aspect ratio and Reynolds number.Results show that high speed rotational flow is formed by the impingement air,thus the heat transfer intensity is significantly enhanced. When jet nozzle aspect ratio increases from 0.2to 9,the outer rotation region,air speed and turbulence kinetic energy decrease at first and then increase,while the static pressure ratio increases at first and then decreases.A larger jet nozzle aspect ratio results in more uniform Nusselt number distribution in the circumferential and axial direction.An increase in Reynolds number leads to pronounced increases in air speed,turbulence kinetic energy,static pressure ratio and wall Nusselt number.However,the flow characteristics are not sensitive to Reynolds number.The globally averaged Nusselt number increases as Reynolds number increases,but decreases at first and then increasesas jet nozzle aspect ratio increases.The heat transfer correlation can be used to accurately predict the vortex cooling heat transfer coefficient with a deviation less than 10%.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第12期124-129,143,共7页 Journal of Xi'an Jiaotong University
关键词 旋流冷却 喷嘴长宽比 雷诺数 传热关联式 vortex cooling jet nozzle aspect ratio Reynolds number heat transfer correlation
  • 相关文献

参考文献9

  • 1LIGRANI P M,OLIVEIRA M M,BLASKOVICH T.Comparison of heat transfer augmentation techniques[J].AIAA Journal,2003,41(3):337-362.
  • 2KREITH F,MARGOLIS D.Heat transfer and friction in turbulent vortex flow[J].Applied Scientific Research:Section A,1959,8(1):457-473.
  • 3HAY N,WEST P D.Heat transfer in free swirling flow in a pipe[J].Journal of Heat Transfer,1975,97(3):411-416.
  • 4LIGRANI P M,HEDLUND C R,THAMBU R,et al.Flow phenomena in swirl chambers[J].Experiments in Fluids,1998,24(3):254-264.
  • 5GLEZER B,MOON H K,O’CONNELL T.A novel technique for the internal blade cooling[C]∥Proceedings of the 1996 ASME Turbo Expo.New York,USA:ASME,1996:V004T09A015.
  • 6HEDLUND C R,LIGRANI P M,GLEZER B,et al.Heat transfer in a swirl chamber at different temperature ratios and Reynolds numbers[J].International Journal of Heat and Mass Transfer,1999,42(22):4081-4091.
  • 7LING J P C W,IRELAND P T,HARVEY N W.Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling passage with tangential injection[C]∥Proceedings of the 2006 ASME Turbo Expo.New York,USA:ASME,2006:325-340.
  • 8LIU Zhao,LI Jun,FENG Zhenping.Numerical study on the effect of jet slot height on flow and heat transfer of swirl cooling in leading edge model for gas turbine blade[C]∥Proceedings of the 2011ASME Turbo Expo.New York,USA:ASME,2011:1495-1504.
  • 9JIANG Yuting,ZHENG Qun,YUE Guoqiang,et al.Numerical investigation of swirl cooling heat transfer enhancement on blade leading edge by adding water mist[C]∥Proceedings of the 2014ASME Turbo Expo.New York,USA:ASME,2014:V05AT12A019.

同被引文献36

  • 1KREITH F, MARGOLIS D. Heat transfer and fric- tion in turbulent vortex flow [J]. Applied Scientific Research: Section A, 1959, 8(1): 457-473.
  • 2LIGRANI P M, HEDLUND C R, THAMBU R, et al. Flow phenomena in swirl chambers[J]. Experi- mental in Fluids, 1998, 24(3): 254-264.
  • 3SEGURA D, ACHARYA S. Internal cooling using novel swirl enhancement strategies in a slot shaped sin- gle pass channel[C]//Proceedings of the 2010 ASME Turbo Expo. New York, USA: ASME, 2010: 635- 644.
  • 4GLEZER B, MOON H K, O'CONNELL T. A novel technique for lhe internal blade cooling [C]// Proceed- ings of the 1996 ASME Turbo Expo. New York, USA: ASME, 1996: V004T09A015.
  • 5HEDLUND C R, LIGRANI P M, GLEZER B, et al. Heat transfer in a swirl chamber at different tempera- ture ratios and Reynolds numbers[J]. International Journal of Heat and Mass Transfer, 1999, 42 (22) : 4081-4091.
  • 6HEDLUND C R, LIGRANI P M, MOON H K, et al. Heat transfer and flow phenomena in a swirl chamber simulating turbine blade internal cooling[J]. Journal of Turbomachinery, 1999, 121(4): 804-813.
  • 7HEDLUND C R, LIGRANI P M. Local swirl cham- ber heat transfer and flow structure at different Reyn- olds numbers[J]. Journal of Turbomachinery, 2000, 122(2): 375-385.
  • 8LING J P C W, IRELAND P T, HARVEY N W. Measurement of heat transfer coefficient distributions and flow field in a model of a turbine blade cooling pas- sage with tangential injection [C] // Proceedings of the 2006 ASME Turbo Expo. New York, USA: ASME, 2006: 325-340.
  • 9DU Changhe, LI Liang, WU Xin, et al. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge [J]. Applied Thermal Engineering, 2016, 93: 1020- 1032.
  • 10LIU Zhao, L1 Jun, FENG Zhengping. Numerical study on the effect of jet slot height on flow and heat transfer of swirl cooling in leading edge model for gas turbine blade [C] // Proceedings of the 2011 ASME Turbo Expo. New York, USA: ASME, 2011: 1495- 1504.

引证文献10

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部