期刊文献+

采用稀疏SIFT特征的车型识别方法 被引量:13

A Vehicle Classification Technique Based on Sparse Coding
下载PDF
导出
摘要 针对实际应用中因图像清晰度低等因素导致的车型识别误差过大的问题,提出了一种基于稀疏尺度不变转换特征(sparse scale invariant feature transform,S-SIFT)的车型识别方法。该方法用背景建模方法检测交通视频运动目标,提取目标SIFT特征;通过L1约束计算出SIFT特征的稀疏编码,并用最大池化方法降低稀疏编码维度,在线性SVM分类器中完成车型分类,弥补了背景建模方法识别误差过大、不具备车型分类功能的缺陷。经G36高速公路实际应用表明:算法对车辆场景识别率可达98%以上,车型识别准确率可达89%以上,对低清晰度、不同视角、雨雪、遮挡等场景有很好的鲁棒性;图像平均处理时间不超过40ms,可满足系统对实时性的要求,在准确率和时间效率两方面均明显优于传统的SIFT方法和HOG方法。 A new method based on sparse scale invariant feature transform(S-SIFT)is proposed to improve the vehicle recognition rate in environment such as low image quality.Moving objects are detected using a Gaussian mixture background subtraction model and SIFT features of the objects are calculated.Then,the sparse coding of SIFT features is obtained through L1 constraint.A max pooling strategy is introduced to reduce the dimension of the sparse coding.Finally,a linear support vector machine(SVM)is used to classify and to recognize the objects.The method solves the problems that the background modeling has a larger error rate and lacks function of vehicle classification.An application of the technique on G36 highway shows that the algorithm has an excellent result on different scenes such as low resolution,different camera angles,sleet and shade.The experimental results provide a more than 98% scene recognition rate,and a more than 89% classification accuracy rate.Moreover,the average time to process images is less than forty milliseconds,and it meets the real-time requirement.It is concluded that the proposed method is better than the SIFT and the HOG methods on both accuracy and time efficiency.
出处 《西安交通大学学报》 EI CAS CSCD 北大核心 2015年第12期137-143,共7页 Journal of Xi'an Jiaotong University
基金 国家科技重大专项资助项目(2012ZX03005-004-003) 国家自然科学基金资助项目(61105015)
关键词 深度学习 车型识别 稀疏特征 尺度不变转换特征 线性支持向量机分类 deep learning vehicle recognition sparse feature scale invariant feature transform linear support vector machine classification
  • 相关文献

参考文献11

  • 1ZHANG Zhaoxiang,TAN Tieniu,HUANG Kaiqi,et al.Three-dimensional deformable-model-based localization and recognition of road vehicles[J].IEEE Transactions on Image Processing,2012,21(1):1-13.
  • 2WOOD R J,REED D,LEPANTO J,et al.Robust background modeling for enhancing object tracking in video[J].Proceedings of the SPIE,2014,9089(2):1-9.
  • 3黄毅,陈湘军,阮雅端,陈启美.低清晰视频的“白化-稀疏特征”车型分类算法[J].南京大学学报(自然科学版),2015,51(2):257-263. 被引量:3
  • 4DALAL N,TRIGGS B.Histograms of oriented gradients for human detection[C]∥Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2005:886-893.
  • 5DONG Weisheng,LI Xin,ZHANG Lei,et al.Sparsity-based image denoising via dictionary learning and structural clustering[C]∥Proceedings of the 2011IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2011:457-464.
  • 6MAIRAL J,BACH F,PONCE J,et al.Discriminative learned dictionaries for local image analysis[C]∥Proceedings of the 2008IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2008:1-8.
  • 7程东阳,蒋兴浩,孙锬锋.基于稀疏编码和多核学习的图像分类算法[J].上海交通大学学报,2012,46(11):1789-1793. 被引量:6
  • 8YANG Jianchao,YU Kai,GONG Yihong,et al.Linear spatial pyramid matching using sparse coding for image classification[C]∥Proceedings of the 2009IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2009:1794-1801.
  • 9LEE H,BATTLE A,RAINA R,et al.Efficient sparse coding algorithms[J].Advances in Neural Information Processing Systems,2006,19(1):801-808.
  • 10SERRE T,WOLF L,POGGIO T.Object recognition with features inspired by visual cortex[C]∥Proceedings of the 2005IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Piscataway,NJ,USA:IEEE,2005:994-1000.

二级参考文献23

  • 1Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classification[C]∥ Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit (CVPR). Miami, FL, United states: IEEE Press, 2009: 1794-1801.
  • 2Lazebnik S, Schmid C, Ponce J. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories [C] ∥ Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit(CVPR). New York, NY, United States: IEEE Press, 2006: 2169-2178.
  • 3Zhang C, Liu J, Tian Q. Image classification by non-negative sparse coding, low-rank and sparse decomposition [C]∥ Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit (CVPR). Colorado Springs, CO, United States: IEEE Press, 2011: 1673-1680.
  • 4Mairal J, Bach F, Ponce J, et al. Online Learning for Matrix Factorization and Sparse Coding [J]. Journal of Machine Learning Research, 2010, 11: 19-60.
  • 5Bach F R, Lanckriet G R G, Jordan M I. Multiple kernel learning, conic duality, and the SMO algorithm [C]∥ Proc 21st Int Conf Mach Learn (ICML). Banff, Alta, Canada: ACM, 2004: 41-48.
  • 6Efron B, Hastie T, Johnstone I, et al. Least angle regression [J]. Annals of statistics, 2004, 32(2): 407-451.
  • 7Serre T, Wolf L, Poggio T. Object recognition with features inspired by visual cortex[C]∥ Proc IEEE Comput Soc Conf Comput Vision Pattern Recognit(CVPR). San Diego, CA, United States: IEEE Press, 2005: 994-1000.
  • 8Hao J, Jie X. Improved bags-of-words algorithm for scene recognition [C]∥ Proc Int Conf Signal Process Syst(ICSPS). Dalian, China: IEEE Press, 2010: 279-282.
  • 9Tsai G. Histogram of oriented gradients. University of Michigan, 2010.
  • 10Dalal N, Triggs B. Histograms of oriented gradients for human detection//Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on. IEEE, 2005, 1: 886-893.

共引文献6

同被引文献91

引证文献13

二级引证文献58

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部