期刊文献+

求解积分方程的多层雅可比迭代方法

Multilevel Jacobi Iteration Methods for Solving Ill-posed Integral Equations
下载PDF
导出
摘要 介绍基于快速配置法解第一类Fredholm积分方程的多层雅可比迭代方法.该方法得到离散正则化方法方程的快速解.给出后验正则化参数选择方法,确保近似解达到最优,最后,算例验证了算法的有效性. We develop the multilevel Jacobi type iteration method based on fast collocation methods for solving ill-posed integral equations. The method leads to fast solutions of discrete regularization methods for the equations. A choice for a posteriori regularization parameter is proposed. The theoretical analysis and numerical experiments illustrate the accuracy and efficiency of the algorithm.
出处 《赣南师范学院学报》 2015年第6期3-8,共6页 Journal of Gannan Teachers' College(Social Science(2))
基金 国家自然科学基金项目(11361005) 江西省自然科学基金项目(20151BAB201011) 江西省教改项目(JXJG-12-11-3) 江西省研究生创新专项基金项目(YC2015-S376)
关键词 第一类FREDHOLM积分方程 快速配置法 多层迭代方法 正则化方法 后验参数选择 ill-posed integral equation of the first kind fast collocation methods multilevel iteration method regularization methods a posteriori parameter choice strategy
  • 相关文献

参考文献18

  • 1Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems[ M ]. Dordrecht : Kluwer, 1996.
  • 2Groetsch C W. The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind[ M]. Research Notes in Mathematics, 105. Pit- man, Boston, MA,1984.
  • 3Lu Y, Shen L, Xu Y. Multi-parameter regularization methods for high-resolution image reconstruction with displacement errors [ J I. IEEE Trans. Circuits Syst. I, 2007,54 : 1788 - 1799.
  • 4Prazenica R, Lind R, Kurdila A. Uncertainty estimation from Volterra kernels for robust flutter analysis[J]. Guid. Control Dyn, 2003,26:331 -339.
  • 5Vogel C R, Oman M E. Fast roubst total variation-based reconstruction of noisy[J], blurred images, IEEE Trans. Image Proc, 1998,7:813 -824.
  • 6Brenner M, Jiang Y, Xu Y. Multiparameter regularization for Volterra kernel identification via multiseale collocation methods[ J ]. Adv. Comput. Math, 2009,31 (4) :421 -455.
  • 7Cucker F, Smale S. On the mathematical foundation of learning[ J ]. Bull. Am. Math. Soc. 2002,39 : 1 - 49.
  • 8Micchelli C A, Pontil M. Learning the kernel function via regularization [ J ]. Mach. Learn. Res, 2005,6 : 1099 - 1125.
  • 9Xu Y, Zhang H. Refinable kernels[ J]. Mach. Learn. Res. 2007,8:2083 - 2120.
  • 10Atkinson K E. The Numerical Solution of Integral Equations of the Second Kind[ M]. Cambridge: Cambridge University Press,1997.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部