期刊文献+

结构化信号处理理论和方法的研究进展 被引量:3

Perspectives on Theories and Methods of Structural Signal Processing
下载PDF
导出
摘要 结构化信号处理是近年来信息领域发展极为迅猛的一个研究分支,它革新了以Nyquist-Shannon理论为基础的信号处理经典体系的众多结论,开启了面向对象的信息处理的大门,促使挖掘信号的结构性与自适应测量有机结合,推动了信息论、电子学、医疗、应用数学、物理等领域的发展。结构化信号处理研究结构化信号的获取、表征、复原及应用等问题,主要包含4方面内容:(1)研究结构化信号表征与测度的模型和理论;(2)研究结构化信号的复原模型、理论及算法实现;(3)研究信号获取的新体制;(4)研究结构化信号处理的应用。该文以数据和先验两类信息源的融合为主线,讨论了结构化信号处理在信号表征和大尺度信号复原等方面的最新研究结果,并对该领域的发展进行了展望。 Over the past decade structural signal processing is an emerging field, which gained researchers' intensive attentions in various areas including the applied mathematics, physics, information theory, signal processing, and so on. The structural signal processing is a paradigm of making the revolutionary refresh on theories and methods in the nutshell of traditional signal processing based on the well-known Nyquist-Shannon theory, which will render us a new perspective on the adaptive data acquisition in the task-driven manner.Basically, the structural signal processing includes four research contents(MAMA):(a) Measures for the structural signal,(b) Algorithms for reconstructing the structural signal at the low-complexity computational cost,(c) Methods for smart data acquisition at the low hardware cost and system complexity, and(d)Applications of structural signal processing in applied fields. This paper reviews on the recent progress on the theory and algorithms for structural signal processing, which will provides hopefully useful guide for readers of interest.
出处 《雷达学报(中英文)》 CSCD 2015年第5期491-502,共12页 Journal of Radars
基金 国家自然科学基金(61471006)~~
关键词 结构化信号 稀疏信号处理 奈奎斯特采样定理 任务驱动信号处理 Structural signal processing Sparse signal processing Task-driven signal processing Nyquist-Shannon theory
  • 相关文献

参考文献105

  • 1李廉林, 李芳. 稀疏信号处理讲义[M]. 北京大学内部讲义, 2015.
  • 2Elad M.Sparse and redundant representation modeling—what next?[J]. IEEE Signal Processing Letters, 2012, 19(12): 922-928.
  • 3Duarte M F and Eldar Y C. Structured compressed sensing: from theory to applications[J]. IEEE Transactions on Signal Processing, 2011, 59(9): 4053-4085.
  • 4吴一戎. 稀疏微波成像理论、体制和方法研究, 国家973项目申请书(项目首席科学家: 吴一戎, 中国科学院电子学研究所), 2010.
  • 5Candes E J and Tao T. Near-optimal signal recovery from random projections: universal encoding strategies?[J]. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425.
  • 6Donoho D L. Neighborly polytopes and sparse solutions of underdetermined linear equations[J]. Preprint, 2005.
  • 7Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.
  • 8Donoho D L. For most large underdetermined systems of linear equations the minimal l1-norm solution is also the sparsest solution[J]. Communications on Pure and Applied Mathematics, 2006, 59(7): 797-829.
  • 9Donoho D L and Elad M. Optimally sparse representation in general (nonorthogonal) dictionaries via l1 minimization[J]. Proceedings of the National Academy of.
  • 10Sciences, 2003, 100(5): 2197-2202. Donoho D L and Elad M. On the stability of the basis pursuit in the presence of noise[J]. Signal Processing, 2006, 86(3): 511-532.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献711

同被引文献29

  • 1Knaell K and Cardillo G P. Radar tomography for the generation of three-dimensional images[J]. IEEE Proceedings-Radar, Sonar and Navigation, 1995, 142(2): 54-60.
  • 2Reigber A and Moreira A. First demonstration of airborne SAR Tomography using multibaseline L-band data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(9): 2142-2152.
  • 3She Z, Gray D A, Bogner R E, et al.. Three-dimensional space-borne Synthetic Aperture Radar (SAR) imaging with multiple pass processing[J]. International Journal of Remote Sensing, 2002, 23(20): 4357-4382.
  • 4Gini F and Lombardini F. Multilook APES for multibaseline SAR interferometry[J]. IEEE Transactions on Signal Processing, 2002, 50(7): 1800-1803.
  • 5Lombardini F and Reigber A. Adaptive spectrM estimation for multibaseline SAR Tomography with airborne L-band data[C]. 2003 IEEE International Geoscience and Remote Sensing Symposium IGARSS'03, Toulouse, France, 2003, 3: 2014-2016.
  • 6Fornaro G, Serafino F, and Soldovieri F. Three dimensionM focusing with multipass SAR data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2003, 41(4): 507-517.
  • 7Fornaro G, Lombardini F, and Serafino F. Three- dimensional focusing multipass SAP~ focusing: Experiments with long-term spaceborne data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(4) : 702-714.
  • 8Frey O and Meier E. 3-D time-domain SAR imaging of a forest using airborne multibaseline data at L- and P- bands[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3660-3664.
  • 9Zhu X X and Bamler R. Tomographic SAR inversion by L1- Norm regularization-The compressive sensing approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(10): 3839-3846.
  • 10Donoho D. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部