期刊文献+

分布式计算环境下的入侵检测数据分类研究 被引量:1

Intrusion Detection Data Classification by Distributed Computing
下载PDF
导出
摘要 为了有效处理迅速增长的海量信息数据安全问题,在Hadoop云计算平台上,应用朴素贝叶斯算法和Logistic回归算法对入侵检测大数据进行并行计算分析。实验在伪分布模式和分布模式下进行计算,结果表明2种算法分类准确率均超过90%,Logistic回归算法比朴素贝叶斯算法运行时间更长;集群环境下运行的朴素贝叶斯算法可以有效降低运行时间。综合算法运行时间和分类准确率等因素,朴素贝叶斯算法比Logistic回归算法更能有效处理入侵检测大数据;并行计算下朴素贝叶斯算法可以有效分析入侵检测大数据。 To handle huge amounts of network data effectively which is increasing rapidly, Naive Bayesian parallel algorithm and Logistic Regression parallel algorithm were used to analyze the intrusion detection big data based on Hadoop which is a cloud computing system. The intrusion detection data was computed in the model of pseudo-distribution model and distribution model. The experimental results show that the classification accuracy of the two algorithms can exceed 90% and Logistic Regression algorithm spent more time than Naive Bayesian algorithm. Naive Bayesian algorithm can reduce run time effectively in Hadoop cluster. So Naive Bayesian algorithm is more effectively than Logistic Regression algorithm with the classification accuracy and the algorithm running time considered. Naive Bayesian algorithm can analyze the intrusion detection big data.
作者 沈利香 曹国
出处 《计算机与现代化》 2015年第12期43-47,共5页 Computer and Modernization
基金 教育部人文社会科学研究青年基金资助项目(11YJCZH005)
关键词 入侵检测 朴素贝叶斯 LOGISTIC回归 intrusion detection Naive Bayesian Logistic Regression
  • 相关文献

参考文献15

  • 1Chen C L P, Zhang Chun-yang. Data-intensive applications, challenges, techniques and technologies: A survey on big data [ J ]. Information Sciences, 2014,275:314-347.
  • 2Manyika J, Chui M, Brown B, et al. Big Data: The Next Frontier For Innovation, Competition, and Productivity [ EB/OL]. http://www, mckinsey, corn/insights/business _technology/big_data the next_frontier for innovation, 2014-10-30.
  • 3Kambatla K, Kollias G, Kumar V, et al. Trends in big da- ta analytics [ J ]. Journal of Parallel and Distributed Compu- ting, 2014,74(7) :2561-2573.
  • 4Lee Yeonhee, Lee Youngseok. Towards scalable internet traffic measurement and analysis with Hadoop [ J ]. ACM SIGCOMM Computer Communication Review, 2013, 43 ( 1 ) :5-13.
  • 5Edwards M, Rambani A, Zhu Yifeng, et al. Design of Ha- doop-based framework for analyties of large synchmphasor datasets[ J ]. Procedia Computer Science, 2012, 12 : 254- 258.
  • 6Ericson K, Palliekara S. On the performance of high di- mensional data clustering and classification algorithms [ J ]. Future Generation Computer Systems, 2013,29 ( 4 ) : 1024- 1034.
  • 7Caruana G, Li Maozhen, Liu Yang. An ontology enhanced parallel SVM for sealable spam filter training [ J ]. Neuro- computing, 2013,108:45-57.
  • 8Rio S D, Lopez V, Benitez J M, et al. On the use of Ma- pReduce for imbalanced big data using Random Forest [ J ]. Information Sciences, 2014,285 : 112-137.
  • 9Kwon O, Sim J M. Effects of data set features on the per- formances of classification algorithms [ J ]. Expert Systems with Applications, 2013,40 (5) : 1847-1857.
  • 10张新有,曾华燊,贾磊.入侵检测数据集KDD CUP99研究[J].计算机工程与设计,2010,31(22):4809-4812. 被引量:121

二级参考文献4

共引文献120

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部