期刊文献+

基于NIB2DPCA的彩色图像过完整分块特征抽取方法

NIB2DPCA-based Color Image Feature Extraction Method with Over-complete Divided
下载PDF
导出
摘要 在小空间占用的快速彩色图像的特征抽取方法和模块化FPCA(M-FPCA)彩色图像特征提取方法的基础上,结合最新的过完整表示思想,提出基于NIB2DPCA的彩色图像过完整分块特征抽取新方法。该方法对彩色图像进行过完整分块,然后对子图像模块从R、G、B三个信道用NIB2DPCA方法进行特征提取、重构,并进行多模块融合,最终获得分类的特征矩阵。该方法提取的信息量远大于原图像,提高了彩色图像的识别率。通过在FEI和CVL标准彩色人脸数据库上的对比实验表明,所提出方法的人脸识别准确率比文献[14]中的小空间占用的快速彩色图像特征抽取方法提高约4%,比文献[19]中的彩色图像M-FPCA方法提高约5%。 Based on color image feature extraction method with small space occupying and fast speed and color image feature ex- traction method with Modular Factored Principal Components Analysis (color M-FPCA), combined with the latest over-complete representation idea, a novel method named NIB2DPCA-based color image feature extraction method with over-complete divided was proposed. This method can make the color image over-complete divided into smaller modular images, then NIB2DPCA is employed to extract feature information from three channels of a given sub color image module respectively. Then the three extracted feature matrices are reconstructed and multi module integrated. Finally, the classification feature matrix is gotten. The informa- tion amount extracted by the novel method is much larger than the original color image by this method and it improves the recogni- tion accuracy of color image. The results of contrast experiments on CVL and FEI color face databases show that, the proposed method can obtain a higher accuracy by about 4% than color image feature extraction method with small space occupying and fast speed in the reference[ 14] and also obtain a higher accuracy by about 5% than color M-FPCA in the reference[ 19].
出处 《计算机与现代化》 2015年第12期78-83,89,共7页 Computer and Modernization
基金 江苏省自然科学基金资助项目(BK20131106) 江苏省产学研联创项目(BY2013015-40)
关键词 彩色人脸识别 过完整分块 NIB2DPCA 特征抽取 color face recognition over-complete divide non-iteration bilateral two dimensional principal component analysis (NIB2DPCA) feature extraction
  • 相关文献

参考文献21

  • 1Kirby M, Sirovich L. Application of the KL procedure for the characterization of human faces [ J ]. IEEE Trans. Pat- tern Anal. Mach Intel. , 1990,12(1) :103-108.
  • 2Belhumeur P N, Hespanha J, Kriegman D J. Eigen faces vs. Fisher faces: Recognition using class specific linear projection[J]. IEEE Trans. Pattern Anal. Mach. Intel. , 1997,119(7) :711-720.
  • 3Bartlett M S, Movellan J R, Sejnowski T J. Face recogni- tion by independent component analysis [ J ]. IEEE Trans. Neural Network. 2002,13 (6) : 1450-1464.
  • 4Shih Peichung, Liu Chengjun. Improving the face recogni- tion grand challenge baseline performance using color con- figurations across color spaces [ C ]/! IEEE International Conference on Image Processing. 2006:1001-1004.
  • 5Choi Y, Ro Y M, Plataniotis K N. Color face recognition for degraded face images [ J ]. IEEE Transactions on Sys- tem, Man and Cybernetics : Parts B, 2009,39 (5) : 1217- 1230.
  • 6Yang Jian, Liu Cheng-jun. A discriminant models and al- gorithms for face recognition [ J ]. IEEE Transactions on Neural Networks, 2008,19 (12) :2088-2098.
  • 7Rajapakse M, Tan J, Rajapakse J. Color channel encoding with NMF for face recognition [ C ]/! IEEE International Conference on Image Processing. 2004:2007-2010.
  • 8Shih Peichung, Liu Chengjun. Comparative assessment of content-based face image retrieval in different color spaces [ J ]. International Journal of Pattern Recognition and Arti- ficial Intelligence, 2005,19 (7) :873-893.
  • 9Isenberg G, Wurm L, Lubeker A. Color improves object recognition in normal and low vision [ J ]. Journal of Experi- mental Psychology: Human Perception and Performance, 1993,19(4) :899-911.
  • 10Turk M, Pentland A. Face recognition using Eigen faces [J]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71- 86.

二级参考文献80

  • 1杨健,杨静宇,叶晖.Fisher线性鉴别分析的理论研究及其应用[J].自动化学报,2003,29(4):481-493. 被引量:97
  • 2陈才扣,高林,杨静宇.一种基于空间变换的核Fisher鉴别分析[J].计算机工程,2005,31(8):17-18. 被引量:4
  • 3陈伏兵,谢永华,严云洋,杨静宇.分块PCA鉴别特征抽取能力的分析研究[J].计算机科学,2006,33(3):155-159. 被引量:17
  • 4陈伏兵,陈秀宏,张生亮,杨静宇.基于模块2DPCA的人脸识别方法[J].中国图象图形学报,2006,11(4):580-585. 被引量:61
  • 5边肇其,张学工.模式识别[M]2版.北京:清华大学出版社,2000..
  • 6Kirby M, Sirovich L. Application of the KL procedure for the characterization of human faces [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) : 103-108.
  • 7Bartlett M S, Movellan J R, Sejnowski T J. Face recognition by independent component analysis [ J ] . IEEE Transactions on Neural Networks ,2002,13 (6) : 1450-1464.
  • 8Hyvarinen A. Survey on independent component analysis [ J ]. Neural Computing Surveys, 1999,1 ( 2 ) : 94-128.
  • 9Draper B A,Baek K,Bartlett M S,et al. Recognizing faces with PCA and ICA [ J]. Computer Vision and Image Understanding, 2003, 91(1/2) :115-137.
  • 10Liu C J. Enhanced independent component analysis and its application to content based face image recognition [ J]. IEEE Transactions on Neural Networks,2003,14(4) :919-928.

共引文献92

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部