期刊文献+

基于局部相位纹理表示的光照变化人脸识别算法 被引量:1

A Face Recognition Algorithm Under Illumination Variation Based on Local Phase-texture Representation
下载PDF
导出
摘要 针对基于局部纹理的人脸表示不能较好解决不同光照条件下低分辨率人脸图像识别的问题,提出一种新的相位纹理表示法。该算法在局部邻域使用傅里叶变换相位的四象限掩码,减少来自更高幅值响应的滤波器中的错误滤波响应影响,从而产生更具判别性的代码滤波响应,相比局部相位量化(Local Phase Quantization,LPQ)受噪声影响大、量化离散效应等影响,相位纹理表示法更加有效和稳定。在CMU-PIE、扩展YALE-B和AR人脸数据库上的实验结果表明,本算法比局部相位量化更具描述性,识别率比LPQ和广泛使用的LBP(Local Binary Pattern,LBP)和方向梯度直方图(Histogram of Oriented Gradients,HOG)均有较大幅度的提高,对于增强光照条件,识别率增益小于1%,对光照变化的鲁棒性优于其他3种算法。 As the algorithms based on local texture for face recognition can not well solve the problem of low resolution face recognition under varying illumination conditions, a new phase texture representation is presented. The basic idea is to use the fourquadrant phase mask of Fourier Transform in a local neighborhood, with reducing the amplitude response of the filter from the higher impact of the error filter response. And this can generate coding filter response with more discriminating. Comparing with local phase quantization (LPQ) that is affected by noise impact and the impact of discrete effects, phase texture representation is more effective and stable. The experimental results on the three databases CMU-PIE, extended YALE-B and AR show that the proposed algorithm is more descriptive than LPQ recognition and the widely used description like local binary pattern ( LBP), histogram of oriented gradients (HOG). For enhanced lighting conditions, the recognition grain rate of proposed algorithm is less than 1 percent, much better than the three other algorithms in robust to illumination changes.
出处 《计算机与现代化》 2015年第12期84-89,共6页 Computer and Modernization
基金 江苏省高校自然科学研究项目(14KJB520036)
关键词 光照变化 人脸识别 相位纹理表示 傅里叶变换 局部相位量化 滤波响应 illumination variation face recognition phase texture representation Fourier transform local phase quantization filter response
  • 相关文献

参考文献17

  • 1徐明,乔宁博,文振焜,曾新,采振祥.基于特征识别的3维人脸动画模型自动构造[J].中国图象图形学报,2012,17(12):1540-1547. 被引量:7
  • 2Karande K J, Talbar S N. Independent Component Analy- sis of Edge Information for Face Recognition [ M ]. Spring- er, 2014.
  • 3晓莉,达飞鹏.基于排除算法的快速三维人脸识别方法[J].自动化学报,2010,36(1):153-158. 被引量:32
  • 4Draper B A, Baek K, Bartlett M S, et al. Recognizing faces with PCA and ICA [ J ]. Computer Vision and Image Understanding, 2003,91 ( 1 ) :115-137.
  • 5袁宝华,王欢,任明武.基于完整LBP特征的人脸识别[J].计算机应用研究,2012,29(4):1557-1559. 被引量:31
  • 6Ali A, Shah Hussain F H, Hussain S, et al. Face recogni- tion with local binary patterns [ J ]. Bahria University Jour- nal of Information & Communication Technologies, 2012,5 ( 1 ) :46-50.
  • 7Guillaumin M, Verbeek J, Sehmid C. Is that you? Metric learning approaches for face identification [ C ]// 2009 IEEE the 12th International Conference on Computer Vi- sion. 2009:498-505.
  • 8杨冰,王小华,杨鑫,黄孝喜.基于HOG金字塔人脸识别方法[J].浙江大学学报(工学版),2014,48(9):1564-1569. 被引量:12
  • 9Drniz O, Bueno G, Salido J, et al. Face recognition using histograms of oriented gradients [ J ]. Pattern Recognition Letters, 2011,32 ( 12 ) : 1598-1603.
  • 10Ahonen T, Rahtu E, Ojansivu V, et al. Recognition of blurred faces using local phase quantization [ C ]// 2008 IEEE the 19th International Conference on Pattern Recogni- tion. 2008 : 1-4.

二级参考文献93

  • 1焦李成,谭山.图像的多尺度几何分析:回顾和展望[J].电子学报,2003,31(z1):1975-1981. 被引量:227
  • 2方惠兰,王国瑾.三角网格曲面上离散曲率估算方法的比较与分析[J].计算机辅助设计与图形学学报,2005,17(11):2500-2507. 被引量:39
  • 3Zhong C, Sun Z N, Tan T N, He Z F. Robust 3D face recognition in uncontrolled environments. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8.
  • 4Bowyer K W, Chang K, Flynn P. A survey of approaches and challenges in 3D and multi-modal 3D + 2D face recognition. Computer Vision and Image Understanding, 2006, 101(1): 1-15.
  • 5Lu X G, Jain A K. Deformation modeling for robust 3D face matching. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(8): 1346-1356.
  • 6Chang K I, Bowyer K W, Flynn P J. Multiple nose region matching for 3D face recognition under varying facial expression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(10): 1695-1700.
  • 7Besl P J, Mckay H D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256.
  • 8Mian A S, Bennamoun M, Owens R.An efficient multimodal 2D-3D hybrid approach to automatic face recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(11): 1927-1943.
  • 9Beumier C, Acheroy M. Automatic 3D face authentication. Image and Vision Computing, 2000, 18(4): 315-321.
  • 10Dorai C, Jain A K. COSMOS A representation scheme for 3D free-form objects. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(10): 1115-1130.

共引文献87

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部