期刊文献+

基于Black-Litterman模型与Meucci理论确定投资组合权重 被引量:1

The Optimal Weight of Portfolio Based on Black-Litterman Model and Meucci Theory
原文传递
导出
摘要 为考虑投资者线性选择观点和非线性偏好,在确定投资组合中各资产的投资权重时,本文提出了以下的方法:首先利用Black-Litterman模型,结合投资者的线性选择观点,得到权重w的估计值w0-*。其次以w0-*为标准,用蒙特卡罗方法模拟出w1,w2,…,wM等M个权重,根据每个权重,基于历史数据确定整个投资组合的先验分布。再利用Meucci思想,从先验分布中得到情景点(zj,pj),结合投资者非线性偏好,得到后验分布情景点(zj,pj),继而得到整个投资组合的后验分布。最后以风险补偿率为标准,来得出最优的组合权重。该组合权重综合考虑了历史数据、投资者线性选择观点和非线性偏好多个方面的信息。 In order to identify the optimal weight of portfolio with the linear and non-linear views of a certain investors,we treat the problem as follows.At first,based on Black-Litterman model,by combing the linear views of the investor,we get the estimated w which we use to simulate weights w_1,w_2,…,w_m.Then we use each w and historical data.By implementing Meucci theory,we combine the investor's nonlinear views,then get prior scenario points(z_j,p_j),and later posterior points(z_j,p_j),thus we get the posterior distribution of the portfolio.We get a bunch of posterior distributions,so we can choose the best weight according to yield-risk ratio.
出处 《数理统计与管理》 CSSCI 北大核心 2015年第4期741-749,共9页 Journal of Applied Statistics and Management
基金 中国科学院知识创新工程重要研究方向项目(KJCK3-SYW-S02)资助
关键词 完全弹性极值 投资者风险偏好 BLACK-LITTERMAN模型 风险补偿率 fully flexible extreme views investors' view black-litterman model yield-risk ratio
  • 相关文献

参考文献8

  • 1Tze Leung Lai,Xing Hai-peng,Chen Ze-hao.Mean-variance portofolio optimization when means and covariances are unknown[J].The Annals of Applied Statistics,2010,4(2A):798-823.
  • 2Black F,Litterman R.Asset allocation:Combing investor views with market equilibrium[J].The journal of Fixed Income Research,1991,1(2):7-18.
  • 3Giacometti F Fabozzi.Stable distributions in the Black-Litterman approach to asset allocation[J].Quantitative Finance,2007,(7):423-433.
  • 4Attilio Meucci.Enhancing the Black-Litterman and Related Approaches[J].Journal of Asset Management,2009,10:89-96.
  • 5Attilio Meucci,David Ardia,Simon Keel.Fully flexible extreme views[J].Journal of Risk,2011,14:39-49.
  • 6储晨,方兆本.修正协方差阵的投资组合方案及其稳定性[J].中国科学技术大学学报,2011,41(12):1035-1041. 被引量:4
  • 7Joel Goh,Kian Guan Lim etc.Portofolio value-at-risk optimization for asymmetrically asset returns[J].European Journal of Operational Research,2012,2:397-406.
  • 8化宏宇,程希骏.基于跳扩散过程的可转换债券的定价[J].数理统计与管理,2009,28(2):347-351. 被引量:10

二级参考文献23

  • 1王建稳,肖春来.非对称Possion跳——扩散模型的参数估计[J].数理统计与管理,2005,24(4):76-79. 被引量:4
  • 2Bate D. Jumps and stochastic volatility: exchange rate processes implicit in deutsche mark options [J]. Review of financial Studies, 1996, 9: 67-107.
  • 3Chacko G, Viceira L. Spectral GMM Estimation of Continuous-time Processes [J]. Journal of Econometrics, 2003, 116: 29-259.
  • 4Markowitz H. Portfolio Selection: Efficient Diversification of Investment[M]. New York: Wiley,1959.
  • 5Elton E J, Gruber M J. Modern Portfolio Theory and Investment Analysis[M]. New York: Wiley, 1995.
  • 6Jobson J D, Korkie B. Estimation for Markowitz efficient portfolios [J]. Journal of the American Statistical Association, 1980,75(371) :544-554.
  • 7Jorion P. Bayes-Stein Estimation for portfolio analysis [J]. The Journal of Financial and Quantitative Analysis, 1986,21(3) : 279-292.
  • 8Laloux L, Cizeau P, Bouchaud J P, et al. Noise dressing of financial correlation matrices[J]. Physical Review Letters, 1999, 83(7)..1 467-1 470.
  • 9Plerou V, Gopikrishnan P, Amaral L N, et al. Random matrix approach to cross correlations in financial data [J]. Physical Review E, 2002, 65: 066126.
  • 10Bohigas O, Giannoni M J. Mathematical and Computational Methods in Nuclear Physics [ M]. Berlin.. Springer-Verlag, 1983.

共引文献12

同被引文献18

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部