期刊文献+

高维数据下群组变量选择的惩罚方法综述 被引量:8

A Review of Penalized Group Variable Selection Methods in High Dimensional Data
原文传递
导出
摘要 变量选择是统计建模的重要环节,选择合适的变量可以建立结构简单、含义明确、预测精准的稳健模型。在实际应用中,有些变量具有群组结构,本文概括了三类群组变量选择惩罚方法,包括处理高度相关变量、仅选择组变量、即选择组又选择单个变量的方法,着重比较了它们的统计性质和优缺点,总结了相关算法和调整参数选择的方法。最后文章归纳了相关应用情况,并讨论了最新发展方向和所面临的挑战。 Variable selection is of great importance in statistical modeling. Suitable variables can make the model simple, meaningful and have favorite performance of prediction. Actually, there exist group structures among the predictors. This paper gives a review of three types of penalized group variable selection methods, including strongly correlated variable selection, group level selection and bi-level selection. We highlight their statistical properties, advantages and disadvantages. We also summarize the algorithms and tuning parameter selection. We discuss their applications, the further studies and the challenges in the end.
出处 《数理统计与管理》 CSSCI 北大核心 2015年第6期978-988,共11页 Journal of Applied Statistics and Management
基金 国家社会科学基金(13&ZD148 13CTJ001) 国家自然科学基金(71471152) 国家统计局项目(2013LZ53 2012LD001)
关键词 群组变量 变量选择 高维数据 惩罚函数 grouping variable, variable selection, high dimensional data, penalty function
  • 相关文献

参考文献50

  • 1Fan J,Lv J.A selective review of variable selection in high dimensional feature space[J].Statistica Sinica,2010,20:101-148.
  • 2Blum A,Langley P.Selection of relevant features and examples in machine learning[J].Artificial Intelligence,1997,(1-2):245-271.
  • 3Kohavi R,John G.Wrappers for feature selection[J].Artificial Intelligence,1997,(1-2):273-324.
  • 4Fan J,Li R.Variable selection via nonconcave penalized likelihood and its oracle properties[J].J.Amer.Statist.Assoc,2001,96:1348-1360.
  • 5Breiman L.Heuristics of instability and stabilization in model selection[J].Annals of Statistics,1996,24:2350-2383.
  • 6Breiman L.Better subset regression using the nonnegative garrote[J].Technometrics,1995,37:373-384.
  • 7Tibshirani R.Regression shrinkage and selection via the Lasso[J].Journal of Royal Statistical Society(Series B),1996,58:267-288.
  • 8Frank I E,Friedman J H.A statistical view of some chemometrics regression tools(with discussion)[J].Technometrics,1993,35:109-148.
  • 9Zhang C H.Penalized linear unbiased selection[R].Rutgers University,Department of Statistics and Biostatistics Technical Report,2007.
  • 10李根,邹国华,张新雨.高维模型选择方法综述[J].数理统计与管理,2012,31(4):640-658. 被引量:35

二级参考文献90

  • 1王大荣,张忠占.联合广义线性模型中的变量选择[J].统计研究,2007,24(4):37-40. 被引量:2
  • 2Dose C, Cincotti S. Clustering of financial time series with application to index and enhanced index tracking portfolio [J]. Physica A, 2005, 355:145-151.
  • 3Gilli M, Kellezi E. Threshold accepting for index tracking [R]. University of Geneva, Working Paper, 2001.
  • 4Zorin A, Borisov A. Traditional and index tracking methods for portfolio construction by means of neural networks [R]. Scientific Proceedings Of RIGA Technical University, Information Technology and Management Science, 2002.
  • 5Tibshirani R. Regression shrinkage and selection via the lasso [J]. J. Royal. Statist. Soc. (B), 1996, 58: 267-288.
  • 6Efron B, Hastie T, Johnstone I and Tibshirani R. Least angle regression [Jl. Ann. Star., 2004, 82: 409-499.
  • 7Roll R. A mean/variance analysis of tracking error [J]. Journal of Portfolio Management, 1992, 18(4): 13-22.
  • 8Rudolf M, Wolter H J, Zimmernann H. A linear model for tracking error minimization [J]. Journal of Banking K: finance, 1999, 23(1): 85-103.
  • 9Bamberg G, Wagner N. Equity index replication with standard and robust regression estimators [J]. Operation Research Spektrum, 2000, 22: 525-534.
  • 10Fan J, Li R. Statistical challenges with high dimensionality: Feature selection in knowledge discovery [A]. In: Sanz-Sole M, Soria J, Varona J L, et al, eds. Proceedings of the International Congress of Mathematicians [C]. Zurich: European Mathematical Society, 2006, 3: 595-622.

共引文献115

同被引文献59

引证文献8

二级引证文献53

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部