期刊文献+

一种新的社区/动态社区优化方法 被引量:1

Novel Community/Dynamic Community Optimization Algorithm
下载PDF
导出
摘要 社区结构作为复杂网络的重要拓扑特性之一,成为当前的研究热点。本文提出了一种基于边排序和模块度优化的社区发现方法。该方法首先对初始的静态网络进行稀疏化,然后在稀疏化后的网络上依据边的重要程度对边进行排序,给出了一种模块度最大化、快速边合并的社区发现方法(Fast rank-based community detection,FRCD)。在初始网络社区划分结果的基础上,将该方法推广到动态、实时社区划分上,给出了一种快速、鲁棒的动态社区划分方法(Incremental dynamic community detection,IDCD)。理论分析表明FRCD相对于边具有线性时间复杂度。在实际和人工网络上的实验结果均表明,本文提出的方法无论在静态网络社区划分还是在动态网络社区追踪上都优于已有方法。 Community structure is one of the most important topological characteristics in the complex network,being a hot research area in different fields.A novel community detection algorithm is proposed based on edges rank and modularity optimization.Local graph is sparsificated and edges are ranked according to the similarity.Therefore,a method called the fast rank-based community detection(FRCD)by maximizing modularity and fast mergement of edges is achieved.Meanwhile the method is also extended to dynamic and real-time community detection on the basis of initial community structure,and a fast and robust dynamic community detection algorithm called the incremental dynamic community detection(IDCD)is presented.Theoretical analysis exhibit that FRCD has linear complexity for network edges.Experimental results in real-world and artificial networks demonstrate the high accuracy and good performance of the algorithm on static community detection and tracking dynamic structure of networks.
出处 《数据采集与处理》 CSCD 北大核心 2015年第6期1215-1224,共10页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61473030 61370129)资助项目 北京市自然科学基金(4112046)资助项目 北京市科委(Z131110002813118)资助项目 中央高校基本科研业务费专项基金(K15JB00070 2014JBM031)资助项目 北大方正集团有限公司数字出版技术国家重点实验室开放课题资助项目
关键词 社区发现 模块度 边排序 动态性 community detection modularity rank dynamic characteristic
  • 相关文献

参考文献24

  • 1Girvan M, Newman M E J. Community structure in social and biological networks[J]. PNAS, 2002,9(12) :7821-7826.
  • 2Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10) :P10008.
  • 3Newman M E J, Girvan M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004,69(2) : 026113.
  • 4Raghavan U N, Albert R, Kumara S. Near linear time algorithm to detect community structures in large-scale networks[J]. Physical Review E, 2007,76(3) 036106.
  • 5Rosvall M, Bergstrom C T. Maps of random walks on complex networks reveal community structure[J]. Proceedings of the National Academy of Sciences, 2008,105(4) : 1118-1123.
  • 6Tang L, Liu H, Zhang J, et al. Community evolution in dynamic multi-mode networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2008:677-685.
  • 7Tang L, Liu H, Zhang J. Identifying evolving groups in dynamic multimode networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2012,24(1):72-85.
  • 8单波,姜守旭,张硕,等.IC:动态社会关系网络社区结构的增量识别算法[J].软件学报,2009,20:184—192.
  • 9周耀明,李弼程.一种自适应网络舆情演化建模方法[J].数据采集与处理,2013,28(1):69-76. 被引量:26
  • 10Shang J, Liu L, Xie F, et al. A real-time detecting algorithm for tracking community structure of dynamic networks[C]// The 6th SNA-KDD Workshop. New York, USA: ACM, 2012.

二级参考文献12

  • 1Zeng Jianping,Zhang Shiyong,Wu Chengrong. Predictive model for Internet public opinion[A].Haikou:IEEE Press,2007.7-11.
  • 2Halim S,Bisono I N. Automatic seasonal auto regressive moving average models and unit root test detection[A].Singapore:IEEE Press,2007.1129-1133.
  • 3Ledesma S,Ruiz J,Garcia G. Analysis of selfsimilar data by artificial neural networks networking[A].Delft,Netherlands:IEEE Press,2011.480-485.
  • 4Veitch D,Abry P. Code for the estimation of scaling exponents[EB/OL].http:/ / www.cubinlab.ee.tmimelb.edu.au/~darryl/secondorder code.html,2007.
  • 5杨叔子;吴雅;轩建平.时间序列分析的工程应用[M]武汉:华中科技大学出版社,200741-49.
  • 6Peiyuan Chen,Pedersen T,Bak-Jensen B. ARIMA-based time series model of stochastic wind power generation[J].IEEE Transactions on Power Systems,2010,(02):667-676.
  • 7Permanasari A E,Rambli D R A,Dominic P. Prediction of zoonosis incidence in human using seasonal auto regressive integrated moving average (SARIMA)[J].International Journal of Computer Science and Information Security,2009,(01):103-110.
  • 8Ren Xunyi,Yang Yu,Zhang Junfeng. Parameter estimation and application of time-varying FARIMA model[J].International Journal of Advancements in Computing Technology,2011,(03):89-94.
  • 9凤凰网;艾瑞咨询集团.全球最具影响力中文论坛100强.
  • 10曾润喜.网络舆情信息资源共享研究[J].情报杂志,2009,28(8):187-191. 被引量:167

共引文献25

同被引文献5

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部