期刊文献+

基于混合子空间去噪的免携带设备目标定位 被引量:1

Device-Free Localization Based on Mixed Subspace Denoising
下载PDF
导出
摘要 免携带设备目标定位是利用目标人物对无线通信链路产生的阴影衰落来确定目标的位置,然而当环境发生变化时也会引起无线链路信号强度的变化,会影响定位精度。针对传统子空间去噪方法的不足,本文与指纹法相结合探讨了基于子空间分解的小波去噪方法。通过研究静态环境下的噪声特征,选取最大特征值作为信号分量的阈值,自适应地提取目标信号,有效地消除环境变化产生的影响。在线阶段通过计算实时接收信号强度和射频地图中数据信息之间的核距离进行匹配估计出目标的位置。最后通过实验对本文算法进行了仿真,结果表明本文提出的算法相比传统已有算法能达到更好的定位精度。 Device-free localization(DFL)utilizing the received signal strength(RSS)variations on the wireless link caused by an object is the estimation of the object such as a person without carrying any electronic device.However,environment influences,such as temperature or swaying of sensor nodes,also alter RSS variations,thus degrading the positioning accuracy.A novel wavelet denoising algorithm based on subspace decomposition,combined with the fingerprint method,is proposed to reduce the environment impact.The noise characteristics of static environment are researched,then the maximum characteristic value is extracted as threshold,the signal features are adaptively decomposed into different orthogonal subspaces and the object signal is reconstructed in subspace.The feather extraction method is discussed after the mixed denoising analysis.Gaussian radial basis function is utilized to calculate the kernel distance between online measurement received signal strength and the fingerprint data to estimate the target location coordinate.Simulation results indicate that the proposed algorithm can achieve better positioning accuracy than the traditional location algorithm.
出处 《数据采集与处理》 CSCD 北大核心 2015年第6期1296-1301,共6页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(61501288)资助项目 上海市自然科学基金(15ZR1415500)资助项目
关键词 免携带设备的目标定位 指纹法 子空间分解 混合去噪 核距离 device-free localization fingerprint method subspace decomposition mixed denoising kernel distance
  • 相关文献

参考文献12

  • 1Youssef M, Mah M, Agrawala Pu Challenges: Device-free passive localization for wireless environments[C]//Proceedings of the 13th Annual ACM International Conference on Mobile Computing and Networking. Montreal, Canada:[s. n. ], 2007:222-229.
  • 2Seifeldin M, Saeed A, Kosba A E, et al. Nuzzer: A large-scale device-free passive localization system for wireless environ- ments[J]. IEEE Transactions on Mobile Computing, 2013, 12(7) : 1321-1334.
  • 3Zhang D, Liu Y, Guo X, et al. RASS: A real-time accurate and scalable system for tracking transceiver-free objects[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(5) : 996-1008.
  • 4Wilson J, Patwari N. Radio tomographic imaging with wireless networks[J]. IEEE Transactions on Mobile Computing, 2010, 9(5): 621-632.
  • 5Wilson J, Patwari N. See through walls: Motion tracking using variance-based radio tomography networksr[J]. IEEE Trans- actions on Mobile Computing, 2011, 10(5): 612-621.
  • 6Zhao Y, Patwari N, Phillips J M, et al. Radio tomographic imaging and tracking of stationary and moving people via kernel distance[C]// Proceedings of the 12th International Conference on Information Processing in Sensor Networks. [S. 1. ]: ACM, 2013: 229-240.
  • 7Wang J, Zhang X, Gao Q, et al. Device free localization with wireless networks based on compressive sensing[J]. Communi- cations, IET, 2012, 6(15): 2395-2403.
  • 8Zhao Y, Patwari N. Noise reduction for variance-based device-free localization and tracking[C]//Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on. [S. 1. ].. IEEE, 2011: 179-187.
  • 9Mahfouz S, Mourad-Chehade F, Honeine P, et al. Kernel-based localization using fingerprinting in wireless sensor networks [C]//Signal Processing Advances in Wireless Communications (SPAWC), 2013 IEEE 14th Workshop on. [S. 1. ].. IEEE, 2013 : 744-748.
  • 10Kushki A, Plataniotis K N, Venetsanopoulos A N. Kernel-based positioning in wireless local area networks [J]. IEEE Transactions on Mobile Computing, 2007, 6(6): 689-705.

二级参考文献20

  • 1李文元,何雯,刘梧林,王丽军.变权值LMF/LMS自适应多用户检测器[J].系统仿真学报,2007,19(8):1793-1795. 被引量:6
  • 2Cowie R, Douglas-Cowie E, Tsapatsoulis N, et al. Emotion recognition in human-computer interaction [J]. IEEE Signal Processing Magazine, 2001, 18 (1) :32-80.
  • 3Scherer K R. Vocal communication of emotion: A review of research paradigms[J]. Speech Communi- cation, 2003, 40:227-256.
  • 4Li Wu , Zhang Yanhui , Fu Yingzi. Speech emotion recognition in e-learning system based on affective computing[C]// Proc of the 3rd International Con- ference on Natural Computation. Washington DC : IEEE Computer Society, 2007 : 809-813.
  • 5Stibbard R M. Vocal expression of emotions in non- laboratory speech: An investigation of the reading/ leeds emotion in speech porject annotation data[D]. UK:University of the Reading, 2001.
  • 6Nwe TL, Foo SW , Silva L (2 D. Speech emotion recognition using hidden Markov models[J]. Speech Communication, 2003,41 (4) : 603-623.
  • 7Picard R W. Toward computers that recognize and respond to user emotion[J]. IBM Technical Journal, 2000, 38(2): 705-719.
  • 8Zhiping Wang, Li Zhao, Cairong Zou. Support vec-tor machines for emotion recognition in Chinese speech[J]. Journal of Southeast University ,2003,19 (4) : 307-310.
  • 9Ohala J J. Ethological theory and the expression of e- motion in the voice[C]/// International Conference on Spoken Language Processing. Philadelphia, USA: [s. n. ], 1996:1812-1815.
  • 10Tato R, Santos R, Kompe R, et al. Emotion space improves emotion recognition [C] // Proc IC SLP 2002. Denver, Colorado: [s. n. ],2002:2029-2032.

共引文献2

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部