期刊文献+

基于改进光流法的旋转运动背景下对地运动目标实时检测 被引量:4

Real-Time Ground Moving Object Detection in Rotational Background Based on Improved Optical Flow Method
下载PDF
导出
摘要 针对战机对地侦查视频图像中地面旋转运动背景下运动目标检测高虚警、低实时性的问题,提出了一种基于改进光流法的旋转运动背景下对地运动目标实时检测算法。首先提取图像的特征点,在特征点处计算光流运动矢量,并通过光流矢量场估算背景运动矢量。根据战机飞行高度自适应计算目标像素尺寸,网格化分块待检测图像;然后将各个特征点光流矢量与背景运动矢量相比较,获得备选目标特征点。最后统计分块备选目标特征点密度,判断目标位置区域。对2组实验视频中央360像素×432像素区域进行目标检测实验,结果表明该算法能够准确地检测出地面运动目标,虚警率低。平均每帧检测耗时分别为29.460ms和31.505ms,满足战机对地运动目标检测的实时性。 To solve the problem of high false alarm and low real-time for aerial video with rotational ground background in moving object detection,a real-time algorithm based on optical flow method is proposed.The image feature points are detected first,the optical flows are calculated,and the motion vector of the image background is estimated through optical flow field.Then the target size is calculated according to the flight height and the image is divided into blocks.Each feature point optical flow is compared with the motion vector of the image background to find out the candidates of the target feature point.Finally the candidates is added up in each block and the target areas are determined.Moving objects detection experiment is achieved for 360pix×432pix central area of two groups of experiment video.The result indicates that the algorithm can exactly detect the ground moving object with a low false alarm.The average consuming time is 29.460ms/frame and 31.505ms/frame,thus satisfying the real-time requirements.
出处 《数据采集与处理》 CSCD 北大核心 2015年第6期1325-1331,共7页 Journal of Data Acquisition and Processing
基金 国家自然科学基金(41101441)资助项目 南京航空航天大学基本科研业务费专项科研项目(NN2012083 NS2010214 NP2011048)资助项目
关键词 改进光流法 地面背景 旋转运动 目标检测 视频图像 improved optical flow method ground background rotational motion object detection video image
  • 相关文献

参考文献10

二级参考文献43

  • 1郁梅,王圣男,蒋刚毅.复杂交通场景中的车辆检测与跟踪新方法[J].光电工程,2005,32(2):67-70. 被引量:23
  • 2杨常清,王孝通,李博,金良安.基于特征光流的角点匹配快速算法[J].光电工程,2006,33(4):85-88. 被引量:4
  • 3Trajkovic M, Hedley M. Fast Comer Detection[J]. Image and Vision Computing, 1998, 16(2): 75-87.
  • 4Nie Yao, Ma Kaikuang. Adaptive Rood Pattern Search for Fast Block-matching Motion Estimation[J]. IEEE Transactions on Image Processing, 2002, 11(12): 1442-1449.
  • 5Fischler M A, Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography[J]. Comm. of the ACM, 1981, 24(6): 381-395.
  • 6Smith S M, Brady J M. SUSAN A New Approach to Low Level Image Processing[J]. International Journal of Computer Vision, 1997, 23(1): 45-60.
  • 7Li L, Luo R. Context-controlled adaptive background subtraction [EB/OL].[ 2009-12- 3 ]. http://www, cvg. rdg. ac. uk/ PETS2OO6/PETS2006_PROCEEDIN GS. pdf.
  • 8Wren C, Azarbayejani A. Pfinder: Real-time tracking of the human body [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7) : 780-785.
  • 9Zivkovic Z. Improved adaptive Gaussian mixture model for background subtraction [ J]. Pattern Recognition, 2004, 2 ( 17 ) : 28-31.
  • 10Elgammal A, Duraiswami R. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [ EB/OL ]. [ 2009- 12- 3 ]. http://citeseerx, ist. psu. edu/viewdoc/doweload? doi = 10. 1. 1. 20. 215&rep = repl &type = pdf.

共引文献31

同被引文献37

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部