期刊文献+

基于MAS理论与动态联盟的传感器自适应任务调度算法 被引量:1

Sensor Adaptive Task Scheduling Algorithm Based on Multi-agent System Theory and Dynamic Alliance
下载PDF
导出
摘要 针对无线传感器网络任务调度的实效性及节点能量有限的特点,通过多代理系统(MAS)进行任务划分与逐层处理,根据动态粒子群的自适应优化理论,提出一种传感器自适应任务调度算法。该算法基于多代理的网络架构,根据动态联盟的数学模型,将离散粒子群算法的自适应性与动态联盟的应变能力相结合,通过适应值函数及粒子的更新方法获得全局搜索,实现任务的动态最佳自适应分配。实验结果表明,该算法在降低任务的总执行时间、节点负载压力及网络的总能量消耗量上取得较好的效果。 For the characteristics of the effect of task scheduling and node energy limited in Wireless Sensor Network(WSN),through the Multi-agent System(MAS)for the division of tasks and processing step by step,and the dynamic theory of the adaptive particle swarm optimization,this paper proposes a sensor adaptive task scheduling algorithm.The algorithm is based on MAS architecture,through mathematical models of dynamic alliance,adaptive discrete particle swarm algorithm is combined with dynamic alliance to obtain better global search method by adapting to update the value of the function and particle achieve optimal adaptive dynamic task allocation.Experimental results show that this algorithm achieve better effects in task operation time reduction,node load pressure reduction and energy consume of networks.
作者 郑哲 熊伟清
出处 《计算机工程》 CAS CSCD 北大核心 2015年第12期58-63,共6页 Computer Engineering
基金 浙江省教育厅科研基金资助项目(Y201120868)
关键词 传感器网络 多代理系统理论 动态联盟 任务调度 自适应 sensor network Multi-agent System(MAS)theory dynamic alliance task scheduling adaptive
  • 相关文献

参考文献15

  • 1Kulkarni R V,Forster A, Venayagamoorthy G K. Com- putational Intelligence in Wireless Sensor Networks: A Survey [ J]. IEEE Communications Surveys & Tutorials, 2011,13(1) :68-96.
  • 2Yang H, Zhang Y. Analysis of Supercapacitor Energy Loss for Power Management in Environmentally Powered Wireless Sensor Nodes [ J].IEEE Transactions on Power Electronics ,2013,28 ( 11 ) :5391-5403.
  • 3Dai L,Chang Y, Shen Z. An Optimal Task Scheduling Algorithm in Wireless Sensor Networks[ J]. International Journal of Computers Communications & Control ,2011, 6(1) :101-112.
  • 4Farooq M O, Kunz T. Operating Systems for Wireless Sensor Networks : A Survey[J ]. Sensors, 2011,11 ( 6 ) : 5900-5930.
  • 5Yang H, Zhang Y. Analysis of Supercapacitor Energy Loss for Power Management in Environmentally Powered Wireless Sensor Nodes [ J ]. IEEE Transactions on Power Electronics ,2013,28 ( 11 ) :5391-5403.
  • 6Shrivastava P, Pokle S B. Energy Efficient Scheduling Strategy for Data Collection in Wireless Sensor Networks [ C ]//Proceedings of International Conference on Electronic Systems, Signal Processing and Computing Technologies. Washington D. C. , USA: IEEE Press, 2014 : 170-173.
  • 7Guo W, Chen Y, Chen O. Dynamic Task Scheduling Strategy with Game Theory in Wireless Sensor Net- works[J]. New Mathematics and Natural Computation, 2014,10(3) :211-224.
  • 8Dai L, Xu H, Chen T,et al. A Multi-objective Optimiza-tion Algorithm of Task Scheduling in WSN[J]. International Journal of Computers Communications & Control ,2014,9 ( 2 ) : 160-171.
  • 9Wang F, Han G, Jiang J, et al. A Distributed Task Allocation Strategy for Collaborative Applications in Cluster-based Wireless Sensor Networks [ J ]. Inter- national Journal of Distributed Sensor Networks, 2014, 21(4) :1-16.
  • 10Liu Y, Xu B. Energy-efficient Distributed Multi-sensor Scheduling Based on Energy Balance in Wireless Sensor Networks [ J ]. Ad Hoc & Wireless Sensor Networks, 2014,20 ( 3 ) :307-328.

二级参考文献36

  • 1张国富,蒋建国,夏娜,苏兆品.基于离散粒子群算法求解复杂联盟生成问题[J].电子学报,2007,35(2):323-327. 被引量:33
  • 2朱敬华,高宏.无线传感器网络中能源高效的任务分配算法[J].软件学报,2007,18(5):1198-1207. 被引量:21
  • 3刘梅,李海昊,沈毅.无线传感器网络空中目标跟踪任务分配技术的研究[J].宇航学报,2007,28(4):960-965. 被引量:14
  • 4AKYILDIZ I F, SU W, SANKARASUBRAMANIAM Y, et al. Wire- less sensor networks: a survey[J]. Computer Networks, 2002, 38(4): 393-422.
  • 5YU Y, VIKTOR K E Energy-balanced task allocation for collaborative processing in wireless sensor networks[J]. Mobile Networks and Ap- plications, 2005, 10(12): 115-131.
  • 6TIAN Y, BOANGOAT J, EKICI E, et al. Real-t!me task mapping and scheduling for collaborative in-network processing in DVS-enabled wireless sensor networks[A]. Proc of the 20th International Parallel and Distributed Processing Symposium[C]. Island, Greece, 2006.
  • 7TIAN Y, GU Y Y, EKICI E, et al. Dynamic critical-path task mapping and scheduling for collaborative in network processing in multi-hop wireless sensor networks[A]. Proc of the 2006 International Confer- ence on Parallel Processing Workshops[C]. Columbus, Ohio, USA,2006.215-222.
  • 8ZENG Z W, LIU A F, LI D, et al. A highly efficient DAG task sched- uling algorithm for wireless sensor networks[A]. Proc of the 9th In- ternational Conference for Young Computer Scientists[C]. 2008. 570-575.
  • 9ABDELHAK S, GURRAM C S, GHOSH S, et al. Energy balancing task allocation on wireless sensor networks for extending the life- time[A]. Proc of the 2010 IEEE International 53rd Midwest Sympo- sium on Circuits and Systems[C]. Seattle, Washington, 2010. 781-784.
  • 10GUO W Z, XIONG N X, CHAO H C, et al. Design and analysis of self-adapted task scheduling strategies in wireless sensor networks[J]. Sensors, 2011, 11 (7): 6533-6554.

共引文献10

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部