期刊文献+

WSN中节点无标识环境下的定位算法

Location Algorithm Under Node Without Identification Environment in WSN
下载PDF
导出
摘要 针对无线传感器网中节点无标识以及数量未知环境下的节点定位问题,提出一种通过优化圆环交叉区域筛选可行节点位置和数量的算法。采用粗粒度的圆环搜索标识重叠区域的交叉数量,生成二阶定位点权重矩阵。通过求矩阵极大值确定并筛选出可能含有未知节点的圆环交叉区域,利用每个区域的质心代表该交叉区域。运用自适应遗传算法估计未知节点的数量和位置,将贝叶斯信息准则最小值作为选择模型参数最优值的依据。实验结果表明,在未知节点分布稀疏的情况下,该定位算法既能准确估计出未知节点的数量,也能达到较高的定位精度。 In Wireless Sensor Network(WSN)which consists of node without identification and quantity,this paper proposes an algorithm in order to solve the problem of node localization.This algorithm can achieve nodes' quantity and locations by optimizing the ring crossing area.The algorithm generates position weight matrix by employing coarse-grained ring search and identifying cross-quantity of the overlapping area.It identifies and filters out the ring crossing area which may contain unknown nodes by calculating the maximum value,and on behalf of the intersection area using the centroid of each region.It makes use of adaptive genetic algorithm to estimate the quantity and locations of unknown nodes,and takes the minimum value of Bayesian Information Criterion(BIC)as the basis for choosing the optimal parameters of the model parameters.Experimental results show that the algorithm can accurately estimate the quantity of unknown nodes,and the algorithm can achieve a higher positioning accuracy in the case of sparse distribution of the unknown nodes.
作者 陈树 高静
出处 《计算机工程》 CAS CSCD 北大核心 2015年第12期101-106,共6页 Computer Engineering
基金 江苏省六大人才高峰基金资助项目(2012-WLW-006)
关键词 无线传感器网络 定位 节点无标识 圆环搜索 自适应遗传算法 Wireless Sensor Network(WSN) location node without identification ring search adaptive genetic algorithm
  • 相关文献

参考文献12

  • 1Patwari N,Ash J N, Kyperountas S, et al. Locating the Nodes: Cooperative Localization in Wireless Sensor Networks[ J]. IEEE Signal Processing Magazine, 2005, 22(4) :54-69.
  • 2Zhang Liqing, Zhou Xiaobo, Cheng Qiang. Landscape- 3D:A Robust Localization Scheme for Sensor Networks over Complex 3 D Terrains [ C ]//Proceedings of the 31 st Annual IEEE Conference on Local Computer Networks. Washington D. C. , USA : IEEE Press, 2006 : 239-246.
  • 3Sichitiu M L, Ramadurai V, Localization of Wireless Sensor Networks with a Mobile Beacon [ C ]// Proceedings of IEEE International Conference on Mobile Ad-hoc and Sensor Systems, Washington D. C. , USA: IEEE Press ,2004 : 174-183.
  • 4Kim K, Lee W. MBAL: A Mobile Beacon-assisted Localization Scheme for Wireless Sensor Networks [ C ]// Proceedings of the 16th International Conference on Com- puter Communications and Networks. Washington D. C. , USA :IEEE Press ,2007:57-62.
  • 5Zhang Yuan, Bao Lichun, Yang Shih-Hsien, et al. Localization Algorithms for Wireless Sensor Re- trieval [ J]. Computer Journal,2010,53 ( 10 ) : 1594-1605.
  • 6Kulaib A R,Shubair R M, A1-Qutayri M A, et al. An Overview of Localization Techniques for Wireless Sensor Networks [ C ]//Proceedings of International Conference on Innovations in Information Technology. New York, USA: IEEE Communication Society, 2011 : 167-172.
  • 7Vivekanandan V, Wong V W S. Concentric Anchor Beacon Localization Algorithm for Wireless Sensor Networks[ J ]. IEEE Transactions on Vehicular Techno- logy ,2007,56 ( 5 ) :2733-2744.
  • 8姜志鹏,高随祥.无线传感器网络节点定位的同心圆改进算法[J].计算机科学,2009,36(10):46-48. 被引量:4
  • 9李尧尧,廖红云,曾孝平,吴小林.基于锚同心圆的改进加权质心WSN定位算法[J].计算机仿真,2011,28(6):141-144. 被引量:3
  • 10任智,李晴阳,陈前斌,LiHongbin.无线网络衰落和损耗的建模与仿真研究[J].系统工程与电子技术,2009,31(12):2813-2819. 被引量:12

二级参考文献53

  • 1王福豹,史龙,任丰原.无线传感器网络中的自身定位系统和算法[J].软件学报,2005,16(5):857-868. 被引量:672
  • 2陈维克,李文锋,首珩,袁兵.基于RSSI的无线传感器网络加权质心定位算法[J].武汉理工大学学报(交通科学与工程版),2006,30(2):265-268. 被引量:207
  • 3李卫,王杉,魏急波.基于OPNET的Link 16建模与仿真[J].系统工程与电子技术,2006,28(12):1916-1918. 被引量:11
  • 4Vivekanandan V, Wong V W S. Concentric anchor beacon localization algorithm for wireless sensor networks[J]. IEEE Transactions on Vehicular Technology, 2007,56 (5) : 2733-2744.
  • 5Bulusu B, Heidemann J, Estrin D. Density adaptive algorithm for beacon placement in wireless sensor networks[C]// IEEE ICDCS'01. Phoenix,AZ,April 2001.
  • 6He T, Huang C, Blum B M, et al. Range-free localization scheme for large scale sensor networks[C]//Proc. 9th Annual Int'l Conf. on Mobile Computing and Networking. San Diego, CA, 2003 : 81-95.
  • 7Savvides A, Han C-C, Srivastava M B. Dynamic fine-grained localization in adhoc networks of sensors[C]//Proceedings of the 7th Annual Conference on Mobile Computing and Networking. Rome,Italy,July 2001 : 166-179.
  • 8Nagpal R. Organizing a global coordinate system from local information on an amporphous computer [R]. AI Memo 1666. MIT AI Laboratory,August 1999.
  • 9Yang Sungwon,Yi Jiyoung,Cha Hojung. HCRL: A Hop-CountRatio based Localization in Wireless Sensor Networks[J]. Sensor, Mesh and Ad Hoc Communications and Networks, 2007,18 (21) : 31-40.
  • 10Wong Sau Yee, Lim Joo Ghee, Rao S V, et al. Density-aware Hop-Count Localization(DHL) in Wireless Sensor Networks with Variable Density[C]//Wireless Communications and Networking Conference. Volume 3. March 2005:1848-1853.

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部