期刊文献+

基于空间约束SIFT的光学与SAR图像配准 被引量:5

Registration of Optical and SAR Images Based on Spatial Constraints SIFT
下载PDF
导出
摘要 针对光学与合成孔径雷达(SAR)图像难以配准的问题,提出一种基于空间约束的尺度不变牲变换(SIFT)算法。该算法对光学图像和SAR图像分别进行预处理,包括利用增强Frost滤波抑制SAR图像的相干斑噪声,及运用自适应直方图均衡法增强光学和SAR图像之间的共性轮廓特征。人工选取3个~4个同名控制点对进行粗配准。通过改进的SIFT方法提取特征点,以结构相似性指数作为特征点之间的相似性测度,并采用kd-tree搜索策略得到初始匹配点对。使用空间约束条件和随机抽样一致性算法筛选匹配点对,利用最终的精匹配点对完成配准。实验结果表明,该算法对光学和SAR图像的配准可以取得较高的精度,配准精度优于2个像素。 Aiming at the problem that optical and Synthetic Aperture Radar(SAR)images is difficult for registration,this paper proposes an improved Scale Invariant Feature Transform(SIFT)algorithm based on spatial constraints.The algorithm preprocesses optical and SAR images,the enhanced Frost filter and adaptive local histogram equalization are adopted to improve the common property of the optical and SAR images,and three or four corresponding points are selected manually to realize a coarse registration.An improved version of the SIFT method is proposed to detect the key points,and the Structure Similarity(SSIM)is used to obtain initial matching features by kd-tree search method.The initial matching features are refined by spatial constraints and Random Sample Consensus(RANSAC)method.The refined feature matches are used for registration.Experimental results show that the proposed method has higher precision for optical and SAR images registration and registration precision achieves 2 pixels.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第12期182-187,共6页 Computer Engineering
基金 国家自然科学基金资助项目(41301383)
关键词 尺度不变特征转换 空间约束 结构相似性指数 合成孔径雷达 图像配准 Scale Invariant Feature Transform(SIFT) spatial constraints Structure Similarity(SSIM)index Synthetic Aperture Radar(SAR) image registration
  • 相关文献

参考文献25

  • 1Siddique M A, Sarfraz M S, Bornemann D, et al. Automatic Registration of SAR and Optical Images Based on Mutual Information Assisted Monte Carlo [ C ]//Proceedings Washington D. C. , USA : of 1EEE IGARSS ' 12 IEEE Press ,2012:333-348.
  • 2尤红建,胡岩峰.SAR和光学图像精配准技术的研究[J].雷达学报(中英文),2014,3(1):78-84. 被引量:9
  • 3Hasan M, Pickering M R, Jia Xiuping. Multi-modal Registration of SAR and Optical Satellite Images [ C ]// Proceedings of IEEE DICTA' 09. Washington D. C. USA : IEEE Press, 2009:621-632.
  • 4Wang Zhenhua, ZhangJunping, Zhang Ye, et al. Automatic Registration of Sar and Optical Image Based on Multi-features and Multi-constraints [ C ]//Pro- ceedings of IGARSS' 10. Honolulu, USA: IEEE Press, 2010:265-278.
  • 5Suri S, Reinartz P. Mutual-information-based Registra- tion of Terra SAR-X and Ikonos Imageery in Urban Areas [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2010,48 ( 2 ) :939-949.
  • 6Inglada J, Giros A. On the Possibility of Automatic Multisensor Image Registration [ J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 ( 10 ) : 2104-2120.
  • 7Huang Lei, Li Zhen, Zhang Rui. SAR and Optical Images Registration Using Shape Context [ C ]// Proceedings of IGARSS' 10. Honolulu, USA: IEEE Press ,2010:161-176.
  • 8Liu Xiaojun,Cheng Chtmquan, Sun Jiuyun. Study of the Automatic Matching Method for Optical and SAR.Image[CJ//Proceedings of ISIDF' 11. Tengchong, China:[ s. n. ] ,2011:526-534.
  • 9Wu Yingdan, Yang Ming Sensing Image Matching A Multi-sensor Remote Method Based on SIFT Operator and CRA Similarity Measure [ C ]//Proceedings of ISIE' 11. Wuhan,China:[ s. n. ] ,2011:452-468.
  • 10Lowe D G. Distinctive Image Features from Scale- invariant Keypoints[ J ]. International Journal on Com- puter Vision ,2004,60 ( 2 ) :91-100.

二级参考文献65

共引文献210

同被引文献52

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部