期刊文献+

基于拟合优度检验的图像序列变化检测 被引量:2

Image Sequence Change Detection Based on Goodness of Fit Testing
下载PDF
导出
摘要 为了能在复杂背景图像序列中进行变化目标检测,提出一种基于统计检验的变化检测算法。利用高斯混合模型计算背景像素和观测像素的经验分布函数,根据假设检验理论计算RBJ统计量,通过待检测像素与背景模型的拟合程度判断像素归属,得到粗略的变化目标,采用高斯分裂原则自适应更新背景分布函数,使背景模型能进一步逼近真实背景,从而得到最终变化目标。仿真结果表明,针对复杂背景的图像序列,该算法能够有效抑制恶劣天气对检测的干扰,查准率较高,综合检测性能指标较好。 An algorithm of change detection based on statistical tests for image sequences is proposed.It achieves to change detection of complex background.Gaussian Mixture Model(GMM)is used to calculate the background pixels and observation of empirical distribution function.It calculats RBJ statistics according to the hypothesis testing theory,uses the pixel and the background of the model fitting degree to make judgment of pixel belongs,and gets rough target change.In order to make the background model can be further close to the real background,it uses Gaussian division principle to adaptively update background distribution function to get the final target.Simulation results show that,for the complex background image sequences,the algorithm can effectively restrain the interference of bad weather,get high precision,and can obtain a better detection performance index.
出处 《计算机工程》 CAS CSCD 北大核心 2015年第12期226-230,共5页 Computer Engineering
基金 国家自然科学基金资助项目(61104213)
关键词 拟合优度检验 经验分布 变化检测 高斯混合模型 高斯分裂原则 goodness of fit testing empirical distribution change detection Gaussian Mixture Model(GMM) Gaussian division principle
  • 相关文献

参考文献13

  • 1Radke J R,Andra S, Al-kofahi O, et al. Image Change Detection Algorithms : A Systematic Survey [ J ]. IEEE Transactions on Image Processing, 2005, 14 ( 3 ) : 294- 307.
  • 2Evangelio H R,Patzold M, Sikora T. Splitting Gaussians in Mixture Models [C ]//Proceedings of the 9th IEEE International Conference on Advanced Video and Signal- based Surveillance. Washington D. C., USA: IEEE Press, 2012 : 300 -305.
  • 3Haines S T, Tao Xiang. Background Subtraction with Dirichlet Process Mixture Models [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4) :670-683.
  • 4St-charles P L, Bilodeau G A, Bergevin R. Flexible Background Subtraction with Self-balanced Local Sensitivity [ C ]//Proceedings of IEEE Workshop on Change Detection. Washington D. C. ,USA : IEEE Press, 2014:414-419.
  • 5Lee D S. Effective Gaussian Mixture Learning for Video Background Subtraction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27 (5) : 827 -832.
  • 6Zivkovic Z. Improved Adaptive Gaussian Mixture Model for Background Subtraction [ C ]//Proceedings of the 17th International Conference on Pattern Recognition. Washington D. C. , USA : IEEE Press, 2004 : 23-26.
  • 7郭春生,王盼.一种基于码本模型的运动目标检测算法[J].中国图象图形学报,2010,15(7):1079-1083. 被引量:12
  • 8Kim H, Sakamoto R, Kitahara I, et al. BackgroundSubtraction Using Generalised Gaussian Family Model[ J]. Electronics Letters ,2008,44 ( 3 ) : 189-190.
  • 9Kaewtrakulpong P, Bowden R. A Real Time Adaptive Visual Surveillance System for Tracking Low-resolution Colour Targets in Dynamically Changing Scenes [ J ]. Image and Vision Computing, 2003,21 ( 10 ) : 913-929.
  • 10Thongkamwitoon T, Aramvith S, Chalidabhongsh H T. An Adaptive Real-time Background Subtraction and Moving Shadows Detection [ C ]//Proceedings of IEEE International Conference on Multimedia and Expo. Washington D. C. , USA : IEEE Press,2004 : 1459-1462.

二级参考文献7

  • 1Christopher R W, Ali A, Trevor D, et al. Pfinder: real-time tracking of the human body[ J]. IEEE Transactions on PAMI, 1997, 19(7) : 780-785.
  • 2Nir F, Stuart R. Image segmentation in video sequences: a probabilistic approach [ C ]//Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. San Fransisco, USA:Morgan Kaufmann, 1997: 175-181.
  • 3Lucia M, Alfredo P. A self-organizing approach to background subtraction for visual surveillance applications [ J ]. IEEE Transactions on IP, 2008, 17 (7) : 1168-1177.
  • 4Kyungnam K, Thanarat H C, David H, et al. Real-time foreground-background segmentation using codebook model [ J ]. Real-Time Imaging, 2005, 11 (3) : 172-185.
  • 5Louis S L, Donald P, Xavier M. Real-time object detection and background maintenance for uncontrolled environments [ C]// Proceedings of the 5th International Conference on Signal Processing, Pattern Recognition, and Applications. Stevens Point, Wisconsin, USA: WSEAS, 2008: 599-604.
  • 6查成东,王长松,巩宪锋,周家新.基于自适应背景模型的运动目标检测[J].光电工程,2008,35(1):26-30. 被引量:6
  • 7张军,代科学,李国辉.基于HSV颜色空间和码本模型的运动目标检测[J].系统工程与电子技术,2008,30(3):423-427. 被引量:14

共引文献11

同被引文献13

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部