期刊文献+

基于非弹性回复的先进高强板回弹研究 被引量:2

Research on springback of advanced high-strength-steel plate based on non-elastic recovery
原文传递
导出
摘要 针对先进高强钢卸载时存在的明显非弹性回复的情况,从能量角度深入分析非弹性回复现象的机理,考虑加载-卸载过程的非弹性回复应变并引入双屈服面理论,建立一种考虑塑性预应变及卸载应力变化的卸载弹性模量模型本构来进行回弹仿真预测。并以某梁类零件为例,对比了新卸载弹性模量本构、Yoshida本构、常规弹性模量本构等的回弹仿真结果与试验结果的区别。研究结果表明:非弹性回复应变具有可逆性与消耗能量的特点,是引起非弹性回复行为的主要原因;新的材料本构模型回弹仿真结果与试验值吻合较好,对比其它模型仿真结果其精度有所提高。 Considering the obvious non-elastic recovery phenomenon of advanced high strength steel plate after unloading, its principle was analyzed deeply from energy aspect, and based on the pre-plastic strain and unload elastic modulus, the material constitutive model was set up to simulate and predict the spring by the theory of non-elastic recovery strain with two-yield-surface in the loading-unloading process. For the beam-type parts, it was compared the differences of the experimental results with the springback simulation results, which were obtained by the new unload elastic modulus constitutive, Yoshida constitutive and conventional elastic modulus constitutive. Re- search results show that the non-elastic recovery strain is of the characteristics of reversibility and energy consumption, and it is the most important reason of non-elastic recovery phenomenon. Furthermore, the results of springback simulation obtained by the new material con- stitutive model are in good agreement with the experimental results, and the accuracy of the springback simulation is improved comparing with that of other models.
作者 杨蕊
出处 《锻压技术》 CAS CSCD 北大核心 2015年第12期35-42,共8页 Forging & Stamping Technology
关键词 先进高强板 非弹性回复 弹性模量 材料本构 回弹仿真 advanced high strength steel plate non-elastic recovery elasticity modulus material constitutive model springback simulation
  • 相关文献

参考文献20

  • 1Wagoner R H, Hojun Lim, Myoung-Gyu Lee. Advanced issues in springback [ J ]. International Journal of Plasticity, 2013, 45 : 3 -20.
  • 2Kim Hyunjin, Kim Chongmin, Barlat, et al. Nonlinear elastic be- haviors of low and high strength steels in unloading and reloading ~J~. Materials Science and Engineering: A, 2013, 562 (1): 161 - 171.
  • 3Se'rgio Femando Lajarin, Paulo V P Mareondes. Influence of com- putational parameters and nonlinear unloading behavior on spring- back simulation [J]. Springer, 2013, 35 : 123 - 129.
  • 4Cleveland R M, Ghosh A K. Inelastic effects on springback in metals [ J]. International Journal of Plasticity, 2002, 18 : 769 - 785.
  • 5Yang M, Akiyama Y, and Sasaki T. Evaluation of change in mate- rial properties due to plastic deformation [ J~. Journal of Materials Processing Technology, 2004, 151 : 232 - 236.
  • 6Perez R, Benito J A, and Prado J M. Study of the inelastic re- sponse of TRIP steels after plastic deformation [ J ]. Isij Interna- tional, 2005,45 : 1925 - 1933.
  • 7Pavlina E J, Levy B S, Van Tyne C J, et al. The unloading modu- lus of akdq steel after uniaxial and near plane-strain plastic deform- ation [ J 3. International Journal of Modern Physics B, 2008, 22 : 6070 - 6075.
  • 8余海燕,鲍立,高云凯.相变诱发塑性钢板的非弹性回复行为及其对回弹的影响[J].机械工程学报,2010,46(18):46-51. 被引量:19
  • 9Luo L M, Ghosh A K. Elastic and inelastic recovery after plastic deformation of DQSK steel sheet [ J ~. Journal of Engineering Ma- terials and Technology-Transactions of the Asme, 2003, 125 : 237 - 246.
  • 10Eggertsen P A, Mattiasson K. On constitutive modeling for spring- back analysis [ J]. International Journal of Mechanical Sciences, 2010, 52 (6):804-818.

二级参考文献19

  • 1SUGIMOTO K I, NOBORU U, KOBAYASHI M, et al. Effects of volume fraction and stability of retained austenite on ductility of TRIP-aided dual-phase steels[J]. ISIJ Intern., 1992, 32(12):1 311-1 318.
  • 2DAN W J, LI S H, ZHANG W G, et al. The effect of strain-induced martensitic transformation on mechanical properties of TRIP steel[J]. Materials Design, 2008, 29(3):604-612.
  • 3ANDERSSON A. Numerical and experimental evaluation of springback in advanced high strength steel[J]. J. Mater. Engn. Perfor., 2007, 16(3):301-307.
  • 4GAN W, BABU S S, KAPUSTKA N, et al. Microstructural effects on the springback of advanced high-strength steel[J]. Metallurgical and Materials Trans. A, 2006, 37(11):3 221-3 231 .
  • 5CLEVELAND R M, GHOSH A K. Inelastic effects on springback in metals[J]. Intern. J. Plasticity, 2002, 18:769-785.
  • 6LI X C, YANG Y Y, WANG Y Z, et al. Effect of the material hardening mode on the springback simulation accuracy of V-free bending[J]. J. Mater. Proc. Techn., 2002, 123:209-211.
  • 7ZANG S L, GUO C, WEI G J, et al. A new model to describe effect of plastic deformation on elastic modulus of aluminum alloy[J]. Transactions of the Nonferrous Metals Society of China, 2006, 16(Suppl.):1 314-1 318.
  • 8LUO Limin, GHOSH A K. Elastic and inelastic recovery after plastic deformationof DQSK steel sheet[J]. J. Engin. Mater. Techn., ASME, 2003, 125:237-246.
  • 9MORESTIN F, BOIVIN M. On the necessity of taking into account the variation in the Young modulus with plastic strain in elastic-plastic software[J]. Nuclear Engineering and Design, 1996, 162:107-116.
  • 10YOSHIDA F, UEMORI T, FUJIWARA K. Elastic-plastic behavior of steel sheets under in-plane cyclic tension- compression at large strain[J]. Intern. J. Plasticity, 2002, 18:633-659.

共引文献18

同被引文献18

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部