摘要
社会学认为生活在同一个社会圈子中的用户表现出相似的行为和共同的偏好,这些有别于信任图拓扑结构的信息也可以用于信任预测中.由此提出了一种基于Folksonomy的信任预测方法TPMF(Trust Prediction Method based on Folksonomy),整合社会网中信任信息和Folksonomy中的用户资源信息和用户标记信息,利用优化技术预测社会网络中的信任关系.在真实数据集上的实验表明,该方法具有很好的性能.
The people who are in the same social circle often exhibit similar behaviors and tastes in sociology reserach.The ancillary information that difference from trust graph topology can be used for trust prediction.In this article,we propose a novel Trust Prediction Method based on Folksonomy(TPMF).Our new joint method explores the trust information in trust domain and user-sources graph and user-tagged information in folksonomy.By optimize the proposed objective function,the folksonomy information can be utilized to enhance the prediction.The extensive experiments have been conducted on real world data.The empirical results demonstrate the effectiveness of our method.
出处
《微电子学与计算机》
CSCD
北大核心
2015年第12期136-140,共5页
Microelectronics & Computer
基金
常州工学院自然科学基金重点项目(YN1203
YN1316)
常州市应用基础计划研究项目(CJ20120009)
关键词
信任预测
社会网络
社会标记
非负矩阵分解方法
trust prediction
social network
folksonomy
nonnegative matrix factorization