期刊文献+

Pt-Ag合金纳米线热力学性质的分子动力学模拟研究 被引量:3

Pt-Ag alloy nanowires thermodynamic properties of molecular dynamics simulation study
下载PDF
导出
摘要 基于原子嵌入势(EAM),采用分子动力学方法,对临界尺寸下的Pt_(0.95)Ag_(0.05)合金纳米线多边形结构的熔化行为进行了计算模拟.结果表明:径向尺寸对Pt_(0.95)Ag_(0.05)合金纳米线的熔点影响较为显著,而长度对其影响较小;引入林德曼因子得到的熔点和用势能-温度变化曲线找到的熔点基本一致;合金纳米线的染色原子由外向内运动;综合分析发现Pt_(0.95)Ag_(0.05)合金纳米线以先外后内的模式进行熔化. The melting behaviors of the polygon structure for Pt_(0. 95)Ag_(0. 05) alloynanowires are studied by using em- pirical molecular- dynamicssimulation by Embedded- Atom Method( EAM) potential. And the results show that the radial size of Pt_(0. 95)Ag_(0. 05) alloy nanowire has enormousinfluence on the melting point and minimal impact on its length. We also find that for Pt_(0. 95)Ag_(0. 05) alloy nanowires,the melting temperature obtained by introducing Lindemann factor is well consistent with that from the potential and temperature curve; Bylabeling atoms with colors,we found that the outerior atoms movetowards inside; The results indicate that melting of Pt_(0. 95)Ag_(0. 05) alloy nanowires starts from the outerior layer firstly and then theinterior.
作者 曾冰 王新强
出处 《原子与分子物理学报》 CAS CSCD 北大核心 2015年第6期1050-1054,共5页 Journal of Atomic and Molecular Physics
关键词 Pt0.95Ag0.05合金纳米线 纳米线结构 熔化行为 分子动力学模拟 Pt0.95Ag0.05 alloy nanowires Nanowires structure Melting behavior Molecular dynamic simulations
  • 相关文献

参考文献18

  • 1Koh S J A, Lee H P, Lu C, et al. Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain : Temperature and strain - rateeffects [ J ]. Phys. Rev. B, 2005, 72: 085414.
  • 2Li G, Li X H, Zhang Z J. Preparation methods of cop- per nanomaterials progress[J]. Phys. Chem., 2011, 23(8) : 1644.
  • 3张敏,李经建,潘牧,徐东升.Pt纳米线阵列的氧还原催化性能[J].物理化学学报,2011,27(7):1685-1688. 被引量:9
  • 4YuHW, ZiZZ, RuZZ, et al. Size effects on the melting of nickel nanowires: a molecular dynamics study[J]. Physica E, 2004, 25: 47.
  • 5张材荣,张碧霞,陈玉红,李维学,许广济.Si_3N_4团簇结构与性质的密度泛函理论研究(英文)[J].原子与分子物理学报,2006,23(4):694-698. 被引量:11
  • 6Erts D, Polyakov B, Daly B, et al. High density ger- manium nanowire assemblies: contact challenges and electrical characterization[ J]. Phys. Chem. B, 2006, 110(2) : 820 -6.
  • 7Guil M M, Labbaye T, Dellenbach F. A damascene platform for controlled ultra - thin nanowire fabrica- tion. [J]. Nanotechnology, 2013, 24: 245305.
  • 8Sulyma C M C, Pettit C M, Roy D, et al. Electro- chemical investigation of the roles of oxyanions in chemical - mechanical planarization of tantalum and tantalum nitride[J]. Appl. Electrochem. , 2011, 41: 561.
  • 9Liu L, Lee W, Huang Z, et al. Fabrication and char- acterization of a flow - through nanoporous gold nanowire/AAO composite membrane [ J ]. Nanotechnol- ogy, 2008, 19: 335604.
  • 10Liu L, LeeW, Huang Z, et al. Nanoporous Pt - Co al- loy nanowires : fabrication, characterization, and elec- trocatalytic properties [ J ]. Nano Letters, 2009.

二级参考文献20

  • 1张材荣,陈宏善,丁晓彬,王广厚.混合团簇Cu_(13-n)Ag_n(n≤13)基态结构的遗传算法研究[J].原子与分子物理学报,2004,21(3):483-487. 被引量:11
  • 2王保林,赵纪军,王广厚.原子尺度金属纳米线的结构和性质[J].物理学进展,2005,25(3):317-348. 被引量:3
  • 3Appleby, A. J. J Power Sources 1996, 58, 153.
  • 4Ralph, T. R. Platinum Metal Rev. 1999, 43, 14.
  • 5Ralph, T. R. Platinum MetalRev. 1997, 41, 102.
  • 6Mallouk, T. E. Nature 1990, 343,515.
  • 7Steele, B. C. H.; Heinzel, A. Nature 2001, 414, 345.
  • 8Perry, M. L.; Fuller, T. F. J. Electrochem. Soc. 2002, 149,S59.
  • 9Lim, B. K.; Jiong, M. J.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X. M.; Zhu, Y. M.; Xia, Y. N. Science 2009, 324, 1302.
  • 10Shih, Y. H.; Sagar, G. V.; Lin, S. D. J. Phys. Chem. C 2008, 112, 123.

共引文献20

同被引文献36

  • 1周旺民,王崇愚.低维半导体材料应变分布[J].物理学报,2004,53(12):4308-4313. 被引量:6
  • 2王庆学.异质结构的应变和应力分布模型研究[J].物理学报,2005,54(8):3757-3763. 被引量:13
  • 3陈丽群,于涛,王崇愚,邱正琛.杂质P对α-Fe中刃型位错上扭折电子结构的影响[J].物理学报,2008,57(1):443-447. 被引量:3
  • 4Zhao C W,Xing Y M,Zhou CE, et al. Experimentalexamination of displacement and strain fields in anedge dislocation core [ J ] . Acta Mater.,2008,56 :2570.
  • 5Clouet E, Ventelon L, Willaime F. Dislocation coreenergies and core fields from first principles [ J ].Phys. Rev. Lett.,2009, 102 ; 055502.
  • 6Dong Z S, Zhao C W. Measurement of strain fields inan edge dislocation [ J]. Physica B, 2010,405 : 171.
  • 7Wang R,Wang S F, Wu X Z. Edge dislocation corestructures in FCC metals determined from ab initio cal-culations combined with the improved Peierls - Nabar-ro equation [J]. Phys, Scr.,2011, 83: 045604.
  • 8Wang L H, Han X D, Liu P, et al. In situ observationof dislocation behavior in nanometer grains [ J ]. Phys、Rev. Lett. , 2010,105 : 135501.
  • 9Kim D W,Ok J M,Jung W B, ei al. Direct observa-tion of molybdenum disulfide ( MoS2 ) domains by u-sing a liquid crystalline texture method [ J ]. NanoLeu.,2015, 15; 229.
  • 10Cormier J,Rickman J M,Delph T J. Stress calcula-tion in atomistic simulations of perfect and imperfectsolids [J]. J. Appl. Phys.,2001,89: 99.

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部