期刊文献+

带有治疗项的SIS反应扩散传染病模型动力学分析 被引量:3

A dynamics analysis of an SIS epidemic reaction-diffusion model with treatment
下载PDF
导出
摘要 考虑了一类带有饱和治疗项的SIS反应扩散传染病模型。根据最小特征值得到疾病流行阈值——基本再生数,当基本再生数R0<1时,疾病的无病平衡点局部稳定;当R0>1时,无病平衡点不稳定且存在地方病平衡点。通过数值模拟,讨论了治疗项对疾病传播的影响。当疾病流行时,加强治愈率可以有效控制疾病的发展,然而扩大医院规模会促使疾病更大规模的流行。 In this paper,we study the SIS epidemic reaction-diffusion model with the saturated treatment.We obtain the prevalence threshold value of disease,namely the basic reproduction number R0,based on the least eigenvalue.We have proved that the unique disease-free equilibrium is local stable when R0 1,while the disease-free equilibrium is unstable and the endemic equilibrium exists when R01.Through numerical simulation,we discuss the influence of treatment on prevalence of disease.When disease outbreaks,it is efficient to increase cure rate for the control of the disease,while expanding the scale of hospitals will cause even more prevalence of the disease.
出处 《河北科技大学学报》 CAS 2015年第6期587-592,共6页 Journal of Hebei University of Science and Technology
基金 国家自然科学基金(11301490)
关键词 微分动力系统 SIS反应扩散传染病模型 治疗项 基本再生数 无病平衡点 地方病平衡点 differential dynamic system SIS epidemic reaction-diffusion model treatment basic reproduction number disease-free equilibrium endemic equilibrium
  • 相关文献

参考文献23

  • 1马知恩,周义仓,王稳定,等.传染病动力学的数学建模与研究[M].北京:科学出版社,2014.
  • 2靳帧,孙桂全,刘茂省.网络传染病动力学建模与分析[M].北京:科学出版社,2014.
  • 3TUNCER N,MARTCHEVA M.Analytical and numerical approaches to coexistence of strains in a two-strain sis model with diffusion[J].Journal of Biological Dynamics,2012,6(2):406-439.
  • 4ALLEN L J S,BOLKER B M,LOU Y,et al.Asymptotic profiles of the steady states for an SIS epidemic reaction-diffusion model[J].Discrete and Continuous Dynamical Systems,2008,21(1):1-21.
  • 5PENG Rui.Asymptotic profiles of the positive steady state for an SIS epidemic reaction-diffusion model Part I[J].Journal of Differential Equations,2009,247(4):1096-1119.
  • 6PENG Rui,LIU Shengqiang.Global stability of the steady states of an SIS epidemic reaction-diffusion model[J].Nonlinear Analysis,2009,71(1/2):239-247.
  • 7ZHANG Q Q,CUI Q.Global stability of a discrete SIR epidemic model with vaccination and treatment[J].Journal of Difference Equations and Applications,2015,21(2):111-117.
  • 8XIAO Y,ZHANG W,DDENG G,et al.Stability and bogdanov-takens bifurcation of an SIS epidemic model with saturated treatment function[J].Mathematical Problems in Engineering,2015(1):1-14.
  • 9ZHOU T T,ZHANG W P,LU Q Y.Bifurcation analysis of an SIS epidemic model with saturated incidence rate and saturated treatment function[J].Applied Mathematics and Computation,2014,226(1):288-305.
  • 10HU Z X,MA W B,RUAN S G.Analysis of SIR epidemic models with nonlinear incidence rate and treatment[J].Mathematical Biosciences,2012,238(1):12-20.

共引文献11

同被引文献25

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部