摘要
考虑了一类带有饱和治疗项的SIS反应扩散传染病模型。根据最小特征值得到疾病流行阈值——基本再生数,当基本再生数R0<1时,疾病的无病平衡点局部稳定;当R0>1时,无病平衡点不稳定且存在地方病平衡点。通过数值模拟,讨论了治疗项对疾病传播的影响。当疾病流行时,加强治愈率可以有效控制疾病的发展,然而扩大医院规模会促使疾病更大规模的流行。
In this paper,we study the SIS epidemic reaction-diffusion model with the saturated treatment.We obtain the prevalence threshold value of disease,namely the basic reproduction number R0,based on the least eigenvalue.We have proved that the unique disease-free equilibrium is local stable when R0 1,while the disease-free equilibrium is unstable and the endemic equilibrium exists when R01.Through numerical simulation,we discuss the influence of treatment on prevalence of disease.When disease outbreaks,it is efficient to increase cure rate for the control of the disease,while expanding the scale of hospitals will cause even more prevalence of the disease.
出处
《河北科技大学学报》
CAS
2015年第6期587-592,共6页
Journal of Hebei University of Science and Technology
基金
国家自然科学基金(11301490)
关键词
微分动力系统
SIS反应扩散传染病模型
治疗项
基本再生数
无病平衡点
地方病平衡点
differential dynamic system
SIS epidemic reaction-diffusion model
treatment
basic reproduction number
disease-free equilibrium
endemic equilibrium