摘要
研究一类带p-Laplacian算子的高阶多点Caputo分数阶微分方程:Dβ0+(φp(Dα0+u(t)))+f(t,u(t))=0,0≤t≤1,l-1<β≤l,n-1<α≤n,(φp(Dα0+u(0)))(i)=0,i=0,1,2,…,l-1,■m-2u(i)(0)=0,i=1,2,…,n-1,u(1)=∑aiu(ξi)。■i=1运用Schauder不动点定理,得到边值问题正解的存在性,最后给出了例子来验证所得结论。
This paper studies the following Caputo fractional differential equation with p-Laplacian of higher-order multi-point:Dβ0+(φp(Dα0+u(t)))+f(t,u(t))=0, 0≤t≤1,l-1β≤l,n-1α≤n,■(φp(Dα0+u(0)))(i)=0, i=0,1,2,…,l-1,■m-2■u(i)(0)=0, i=1,2,…,n-1, u(1)=∑aiu(ξi)。i=1Using the Schauder fixed point theorem,the existence of positive solution is obtained for the above boundary value problems.An example is presented to illustrate our main theorem.
出处
《河北科技大学学报》
CAS
2015年第6期593-597,共5页
Journal of Hebei University of Science and Technology
基金
河北科技大学校立基金(XL201144)