期刊文献+

带p-Laplacian算子的分数阶微分方程的正解 被引量:1

Positive solutions for fractional differential equation with a p-Laplacian operator
下载PDF
导出
摘要 研究一类带p-Laplacian算子的高阶多点Caputo分数阶微分方程:Dβ0+(φp(Dα0+u(t)))+f(t,u(t))=0,0≤t≤1,l-1<β≤l,n-1<α≤n,(φp(Dα0+u(0)))(i)=0,i=0,1,2,…,l-1,■m-2u(i)(0)=0,i=1,2,…,n-1,u(1)=∑aiu(ξi)。■i=1运用Schauder不动点定理,得到边值问题正解的存在性,最后给出了例子来验证所得结论。 This paper studies the following Caputo fractional differential equation with p-Laplacian of higher-order multi-point:Dβ0+(φp(Dα0+u(t)))+f(t,u(t))=0, 0≤t≤1,l-1β≤l,n-1α≤n,■(φp(Dα0+u(0)))(i)=0, i=0,1,2,…,l-1,■m-2■u(i)(0)=0, i=1,2,…,n-1, u(1)=∑aiu(ξi)。i=1Using the Schauder fixed point theorem,the existence of positive solution is obtained for the above boundary value problems.An example is presented to illustrate our main theorem.
作者 李云红 李艳
出处 《河北科技大学学报》 CAS 2015年第6期593-597,共5页 Journal of Hebei University of Science and Technology
基金 河北科技大学校立基金(XL201144)
关键词 常微分方程其他学科 P-LAPLACIAN算子 分数阶微分方程 多点 正解 不动点定理 ordinary differential equation p-Laplacian fractional differential equation multi-point positive solution fixed point theorem
  • 相关文献

参考文献21

  • 1LIU Yuji,AHMAD B,AGARWAL R P.Existence of solutions for a coupled system of nonlinear fractional differential equations with fractional boundary conditions on the half-line[J].Advances in Difference Equations,2013(1):666-686.
  • 2GUO Yanping,JI Yude,LIU Xiujun.Multiple positive solutions for some multi-point boundary value problems with p-laplacian[J].Journal of Computational and Applied Mathematics,2008,216(1):144-156.
  • 3JI Yude,GUO Yanping,ZHANG Jiehua.Positive solutions for second-order quasilinear multi-point boundary value problems[J].Applied Mathematics and Computation,2007,189(1):725-731.
  • 4GUO Yanping.Positive solutions for three-point boundary value problems with dependence on the first order derivatives[J].Journal of Mathematical Analysis and Applications,2004,290(1):291-301.
  • 5CHEN Taiyong,LIU Wenbin.An anti-periodic boundary value problem for the fractional differential equation with a p-Laplacian operator[J].Applied Mathematics Letters,2012,25(11):1671-1675.
  • 6SUN Yongping,ZHAO Ming.Positive solutions for a class of fractional differential equations with integral boundary conditions[J].Applied Mathematics Letters,2014,34:17-21.
  • 7ZHAI Chengbo,XU Li.Properties of positive solutions to a class of four-point boundary value problem of Caputo fractional differential equations with a parameter[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(8):2820-2827.
  • 8CABADA A,WANG Guotao.Positive solutions of nonlinear fractional differential equations with integral boundary value conditions[J].Journal of Mathematical Analysis and Applications,2012,389(4):403-411.
  • 9CABADA A,HAMDI Z.Nonlinear fractional differential equations with integral boundary value conditions[J].Applied Mathematics and Computation,2014,389(9):251-257.
  • 10ZHANG Lihong,AHMAD B,WANG Guotao,et al.Nonlinear fractional integro-differential equations on unbounded domains in a Banach space[J].Journal of Computational and Applied Mathematics,2013,249(6):51-56.

二级参考文献6

  • 1WEBB J R L,LANK Q. Eigenvalue criteria for existence of multiple positive solutions of nonlinear boundary value problems of local and nonlocal type[J].Topological Methods in Nonlinear Analysis,2006.91-115.
  • 2JIANG Wei-hua. The existence of positive solutions for second-order multi-point BVPs with the first derivative[J].Journal of Computational and Applied Mathematics,2009,(2):387-392.doi:10.1016/j.cam.2008.07.043.
  • 3JIANG Wei-hua. Eigenvalue criteria for existence of multiple positive solutions of high-order nonlinear BVPs[J].Nonlinear Analysis-Theory Methods and Applications,2008.295-303.
  • 4ZHAO J F,WANG P G,GE W G. Existence and nonexistence of positive for a class of third order BVP with integral boundary conditions in banach spaces[J].Commun Nonlinear Sci Numer Simulat,2011,(01):402-413.
  • 5NUSSBAUM R D. Eigenvectors of nonlinear positive operators and the linear Krein-Rutman theorem[J].Lecture Notes in Mathematics,1981.309-330.
  • 6GUO D,LAKSHMIKANTHAM V. Nonliear Problems in Abstract Cones[M].San Diego:academic Press,1988.

共引文献17

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部