期刊文献+

大管径垂直管道内高压汽液混合流动的数值研究

Numerical Study of High Pressure Vapor-Liquid Flow in Large-Diameter Vertical Pipes
下载PDF
导出
摘要 采用流体体积模型(VOF)对高压环境下190 mm大管径垂直管内水蒸汽-水混合流动进行数值研究。数值计算得到了5.07,10.13与17.23 MPa高压下大管径垂直管内汽液流型分布图及搅混流态的相分布图和速度场分布,并与常压下的计算结果进行对比,以研究压力环境带来的影响。数值结果表明,高压环境下大管径垂直管内的流型图与Hewitt和Roberts流型图的吻合度较差。高压环境下大管径垂直管内没有出现雾状流;泡状流和搅混流的发生区域扩大;弹状流的发生区域被压缩得很小;环状流的变化最小。随着压力的增大,大管径垂直管内汽液搅混流中界面波的高度有所降低;液膜铺展在壁面的面积扩大;系统的稳定性提高。速度场分布是管道中心处速度较大;近壁面处速度场发生振荡;壁面处速度迅速减小至零。随着压力的增大,近壁面处速度场振荡的紊乱程度减轻。根据汽液两相流动特性,分析了发生以上现象的原因。 A numerical simulation based on the volume of fluid(VOF) method was used to study vapor–liquid flow in a 190 mm vertical tube under high pressure, and the flow pattern maps of the two-phase convection flow were investigated under pressure of 5.07, 10.13 and 17.23 MPa, respectively. The results of flow under high pressure were compared with that of normal pressure. The results show that the flow pattern maps under high pressure in large-diameter vertical pipes are not consistent with the Hewitt and Roberts flow pattern maps. No wispy annular is presented under high pressure in large-diameter vertical pipes, and the bubbly zone and churn zone are enlarged. The slug zone becomes particularly small with little change happened to the annular zone. The simulation results show that the interfacial wave amplitude of the vapor-liquid churn flow decreases with the increase of pressure in large-diameter vertical pipes, and the interface stability is enhanced at the same time. The pipe central area has the highest velocity, which fluctuates at the boundary area and reduces to zero on the pipe wall. Moreover, the disorder degree of the oscillatory velocity field near the pipe wall decreases under high pressure. Mechanisms were analyzed following the simulation results dicussed.
出处 《高校化学工程学报》 EI CAS CSCD 北大核心 2015年第6期1348-1355,共8页 Journal of Chemical Engineering of Chinese Universities
关键词 两相流 搅混流 VOF 数值分析 two-phase flow churn flow VOF numerical simulation
  • 相关文献

参考文献20

  • 1LIN Zong-hu(林宗虎),GUO Lie-jin(郭烈锦),CHEN Ting-kuan(陈听宽),et al.Theory and technology research on multiphase thermal physics in energy and power field(能源动力中多相流热物理基础理论与技术研究)[M].Beijing(北京):China Power Press(中国电力出版社),2010:52-60.
  • 2王科,马江,白博峰.气液团状流内界面波运动模型研究[J].工程热物理学报,2012,33(12):2116-2119. 被引量:3
  • 3Gad Hetsroni.Handbook of multiphase systems(多相流动和传热手册)[M].LU Zhong-qi(鲁钟琪),trans.Beijing(北京):China Machine Press(机械工业出版社),1993:157-200.
  • 4Hewitt G F,Hall-Taylor N S.Annular two-phase flow[M].Oxford:Pergamon Press,1970:147-151.
  • 5ZHOU Yun-long(周云龙),HONG Wen-peng(洪文鹏),SUN Bin(孙斌).Theory and method on gas-liquid two-phase flow intelligent identification(气液两相流型智能识别理论及方法)[M].Beijing(北京):Science Press(科学出版社),2008:85-89.
  • 6Legius H J W M,Van den Akker H E A,Narumo T.Measurements on wave propagation and bubble and slug velocities in concurrent upward two-phase flow[J].Experimental Thermal and Fluid Science,1997,15(2):267-278.
  • 7Zhu W,Ching C,Shoukri M.Phase distribution and flow regime transition of two-phase flow in large diameter pipes[C].5th International Conference of Multiphase Flow,Yokohama:Japan,2004.
  • 8Cheng H,Hills J H,Azzopardi B J.A study of the bubble to slug transition in vertical gas-liquid flow in columns of different diameter[J].International Journal of Multiphase Flow.1998,24(3):431-452.
  • 9Ohnuki A,Akimoto H.Experimental study on transition of flow pattern and phase distribution in upward air-water flow along a large vertical pipe[J].International Journal of Multiphase Flow.2000,26(3):267-286.
  • 10Omebere-Iyari N K,Azzopardi B J,Ladam Y.Two-phase flow patterns in large diameter vertical pipes at high pressures[J].AICh E Journal.2007,53(10):2493-2504.

二级参考文献41

共引文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部