期刊文献+

一种快速暗通道去雾算法 被引量:3

A Fast Dehazing Algorithm Based on Dark Channel Prior
下载PDF
导出
摘要 基于暗通道的去雾算法计算初始透射率需要进行大量的数据比较,优化透射率时需要计算融合矩阵,这两个过程耗时巨大,使其难以投入实际应用;针对这一问题,提出了一种快速暗通道去雾方法;首先利用分区最小表的数据结构,提高初始透射率的计算速度;接着,在优化透射率时,采用基于形态学梯度的彩色图像边缘检测算法提取图像边缘信息,减少优化范围,再利用边缘信息与像素的空间信息优化透射率,避免计算复杂矩阵,从而加快了优化速度;最后,运用最小可觉差模型补偿前两个步骤导致的图像画质下降,提高图像清晰度;实验证明,快速暗通道去雾算法在保持恢复图像效果基本不变的基础上,很大程度提高了算法速度。 The dehazing algorithm based on dark channel prior is hard to be put into practical application due to the great time complexity of estimating and optimizing the transmission, which needs a large amount of data comparisons and calculating the amalgamation matrix. In order to solve this problem, an fast algorithm based on dark channel prior is presented. Firstly, a data structure called partitioned minimal ta- ble (PAMT) is used to increase the estimating speed of initial transmission. Then, a color image edge detection based on morphological gra- dient is adopted to obtain the edge information of the image to reduce the scope when optimizing the transmission. This edge information and the spatial correlation of the pixel used to optimize the transmission can avoid the complex matrix calculation, which accelerates the speed of optimization. At last, the final recovered image, with enhanced contrast, is obtained by performing a post--processing technique based on just--noticeable difference (JND). Experimental results show that the performance of the proposed algorithm is substantially the same as the original one, but the time complexity has greatly reduced.
出处 《计算机测量与控制》 2015年第12期4141-4144,共4页 Computer Measurement &Control
基金 国家自然科学基金(61403265)
关键词 图像去雾 暗通道 透射率 边缘检测 最小可觉差 dehazing dark channel prior transmission edge detection just--noticeable difference
  • 相关文献

参考文献12

  • 1朱凯军,周焰,兰祖送.基于区域分割的雾天图像增强算法[J].计算机测量与控制,2006,14(5):661-663. 被引量:15
  • 2汪荣贵,傅剑峰,杨志学,沈法琳,查炜.基于暗原色先验模型的Retinex算法[J].电子学报,2013,41(6):1188-1192. 被引量:31
  • 3He K,Sun J, Tang X. Single Image Haze Removal Using DarkChannel Prior [J]. IEEE Trans Pattern Anal Mach Intell, 2010,33?12) : 2341 - 2353.
  • 4A L,D L,Y W. A closed form solution to natural image matting[J]. IEEE Transactions on Pattern Analysis Machine Intelli-gence. 2006: 2006.
  • 5Gao R, Wang Y, Liu M, et al. Fast algorithm for dark channel pri-or [J], Electronics Letters, 2014,50 (24) : 1826 - 1828.
  • 6An E, Xu. L. A morphological gradient approach to color edge de-tection [J]. IEEE Transactions on Image Processing, 2006,15(6): 1454 - 1463.
  • 7Yan Tian,Dong Xia,Yiping Xu.Single foggy image restoration based on spatial correlation analysis of dark channel prior[J].Journal of Systems Engineering and Electronics,2014,25(4):688-696. 被引量:1
  • 8TL J, MK S,H R. Adaptive image contrast enhancement based onhuman visual properties [J]. IEEE Transactions on Medical Ima-ging (Institute of Electrical and Electronics Engineers); ( UnitedStates), 1994,13: 4 ?4): 573 - 586.
  • 9Narasimhan S G, Nayar S K. Vision and the Atmosphere [J]. In-ternational Journal of Computer Vision, 2002,48 (3): 233 - 254.
  • 10Narasimhan S G,Nayar S K. Removing weather effects from mon-ochrome images [A]. Proc. IEEE Conf. computer Vision &- Pat-tern Recognition [C] . 2001,2 : 186.

二级参考文献25

  • 1王树文,闫成新,张天序,赵广州.数学形态学在图像处理中的应用[J].计算机工程与应用,2004,40(32):89-92. 被引量:200
  • 2芮义斌,李鹏,孙锦涛.一种图像去薄雾方法[J].计算机应用,2006,26(1):154-156. 被引量:52
  • 3陈桂友,孙同景,雷印胜.一种基于自适应滤波的指纹图像增强算法[J].电子测量与仪器学报,2006,20(6):76-80. 被引量:12
  • 4王健,陈启美,章德.CMOS图像实时增强预处理研究及实现[J].仪器仪表学报,2007,28(1):48-52. 被引量:4
  • 5Yitzhaky Y,Dror I,Kopeika N S.Restoration of atmospherically blurred images according to weather-predicted atmospheric modulation transfer function[J].Optical Eng.,1998,36 (11).
  • 6Tan K,Oakley J P.Physics based approach to color image enhancement in poor visibility conditions[J].Optical Soc.Am.A,2001,18,(10):2460-2467.
  • 7Oak[ey J P,Satherley B L.Improving image quality in poor visibility conditions using a physical model for degradation[J].IEEE Trans.Image Processing,1998,7 (2):167-179.
  • 8Narasimhan S G,Nayar S K.Removing weather effects from monochrome images[A].Proc.IEEE Conf.Computer Vision and Pattern Recognition[C].2001:186-193.
  • 9Narasimhan S G,Nayar S K.Contrast restoration of weather degraded images[J].IEEE Trans.On Pattern Analysis and Machine Intelligence.Recognition,2003,25 (6):713-723.
  • 10Kim J Y,Kim L S,Hwang S H.An advanced contrast enhancement using partially overlapped sub _ block histogram equalization[J].IEEE Trans.on Circuits and Sys.for Video Tech.,2001,11(4):475-484.

共引文献101

同被引文献15

  • 1范新南,郭建甲.一种新的自适应工程图像分割算法[J].计算机测量与控制,2006,14(3):395-397. 被引量:9
  • 2Tan R. Visibility in bad weather from a single image [A]. Proc ofIEEE CVPR08 [C]. 2009: 1-8.
  • 3Fattal R. Single image de - hazing [J]. ACM Transactions onGraphics (0730-0301), 2008,27 (3): 1-9.
  • 4Kratz L,Nishino K. Factorizing scene albedo and depth from a sin-gle foggy image [A]. Proceedings of the 2009 IEEE 12th Interna-tional Conference on Computer Vision [C]. 2009 : 1701 - 1708.
  • 5Jing Y, Chuangbai X,Dapeng L. Physics based fast single imagefog removal [A]. Proceedings of the IEEE International Conferenceon signal Processing [C]. 2010: 1048 - 1052.
  • 6Tarel J P,Hautiere N. Fast visibility restoration from a single coloror gray level image [A]. Proc. IEEE international conference oncomputer vision (ICCV) [C]. 2009: 2201 - 2208.
  • 7|He K,et al. Single image haze removal using dark channel prior[A]. Proc. of IEEE CVPR09 [C]. 2009: 1956 - 1963.
  • 8朱琳,关佶红,周水庚.Skyline计算研究综述[J].计算机工程与应用,2008,44(6):160-165. 被引量:14
  • 9石丹,李庆武,范新南,霍冠英.基于Contourlet变换和多尺度Rentinex的水下图像增强算法[J].激光与光电子学进展,2010,47(4):41-45. 被引量:22
  • 10陈安伟,乐全明,张宗益,孙勇.基于机器人的变电站开关状态图像识别方法[J].电力系统自动化,2012,36(6):101-105. 被引量:40

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部