期刊文献+

适用于LDPC码的新颖自适应联合加权比特翻转译码算法 被引量:7

Novel self-adaption combined weighted bit-flipping decoding algorithm for LDPC codes
原文传递
导出
摘要 针对低密度奇偶校验(low-density parity-check,LDPC)码采用单比特翻转算法译码可能出现比特循环翻转现象而导致译码收敛速度缓慢的问题,提出一种适用于LDPC码的新颖自适应联合加权比特翻转(self-adaption combined weighted bit-flipping,SCWBF)译码算法。该SCWBF算法结合了能高效实现的可靠率加权比特翻转(implementation-efficient reliability ratio based weighted bit-flipping,IRRWBF)算法与低复杂度加权比特翻转(low complexity weighted bit-flipping,LCWBF)算法的优点,在每次迭代过程中,能自适应翻转单比特或多比特,从而避免了单比特翻转算法在译码过程中产生的同一比特循环翻转现象。仿真结果表明,与加权比特翻转(weighted bit-flipping,WBF)算法、IRRWBF算法以及联合改进加权比特翻转(combined modified weighted bit-flipping decoding,CMWBF)算法相比,提出的SCWBF译码算法加快了LDPC码的译码速度,并且误码性能也得到明显改善。 Seeing that the single bit-flipping decoding algorithm of low-density parity-check( LDPC) codes may appear an infinite cycle bit flipping phenomenon which results in reducing the decoding convergence speed,a novel self-adaption combined weighted bit-flipping( SCWBF) decoding algorithm for LDPC codes is proposed. The novel SCWBF algorithm combines with the advantages of the implementation-efficient reliability ratio based weighted bit-flipping( IRRWBF) algorithm and the low complexity weighted bit-flipping( LCWBF) algorithm. Furthermore,in each iteration,the SCWBF algorithm can self-adaptively flip one or more bits and avoid the same bit trapping into an infinite cycle flipping. Simulation results show that the proposed SCWBF algorithm,compared with the weighted bit-flipping( WBF) algorithm,IRRWBF algorithm and combined modified weighted bit-flipping decoding( CMWBF) algorithm,has a faster decoding speed and a better performance of the bit error ratio( BER) for LDPC codes.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第6期770-774,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国家自然科学基金(61472464) 重庆市基础与前沿研究计划项目(cstc2013jcyj A40017 cstc2015jcyj A0554) 重庆邮电大学(重庆市)研究生科研创新项目(CYS14144)~~
关键词 加权比特翻转译码算法 迭代译码 误码率 循环翻转 weighted bit flipping decoding algorithm iterative decoding bit error rate cycle flipping
  • 相关文献

参考文献11

  • 1HOSUNG P, SEOKBEOM H, JONGSEON N, et al. Construction of High-Rate Regular Quasi-Cyclic LDPC Codes Based on Cyclic Difference Families [ J ]. IEEE Transactions on Communications, 2013, 61 ( 8 ) : 3108- 3113.
  • 2JUANE Li, LIU Keke, LIN Shu, et al. Algebraic Quasi- Cyclic LDPC Codes : Construction, Low Error-Floor, L- arge Girth and a Reduced-Complexity Decoding Sche-me [ J ]. IEEE Transactions on Communications, 2014,62 (8) : 2626-2637.
  • 3ZHANG P, YU S, LIU C, et al. Efficient encoding of QC-LDPC codes with multiple-diagonal parity-check structure[ J]. Electronics Letters, 2014, 50 (4) : 320- 321.
  • 4袁建国,刘文龙,贾跃幸.光通信系统中LDPC码的构造及其编译码算法分析[J].半导体光电,2012,33(3):414-417. 被引量:2
  • 5CHEN X, KANG J, LIN S. Memory system optimization for FPGA-based implementation of Quasi-cyclic LDPC codes decoders [ J ]. IEEE Transactions on Circuits and System, 2011,58(1): 98-111.
  • 6郭强.基于可靠率的改进的LDPC码BF译码算法[J].南京理工大学学报,2009,33(2):165-167. 被引量:3
  • 7GUO F, HANZO L. Reliability ratio based weighted bit- flipping decoding for low-density parity-check codes [ J ]. Electronic Letters, 2004, 40(21) : 1356-1358.
  • 8HUANG Haiyi, WANG Yige, WEI Gang. Combined modified weighted bit-flipping decoding of low-density parity-check codes [ C ]//Wireless Communications & Signal Processing (WCSP), 2012 International Confer- ence on. Huangshan, China: IEEE Press, 2012 : 1-5.
  • 9LEE C H, WOLF W. Implementation-efficient reliability ratio based weighted bit-flipping decoding for LDPCcodes [ J]. Electronics Letter, 2005, 41 (13) : 755-757.
  • 10LIU Z, PADOS D A. Low complexity decoding of finite geometry LDPC Codes [ C ]//Communication 2003 ICC' 03 ,IEEE international Conference on. Anchorage, USA : IEEE Press, 2003 : 2713-2717.

二级参考文献13

  • 1Gallager R G. Low-density parity-check codes [ M]. Cambridge: M I T Press, 1963.1 -73.
  • 2MacKay D J C. Good error-correcting codes based on very sparse matrices[ J ]. IEEE Trans On Inform Theory, 1999, 45(2) : 399 -431.
  • 3Kou Y, Lin S, Fossorier M P C. Low density parity cheek codes based on finite geometries: a rediscovery and new results[ J]. IEEE Trans on Information Theory, 2001, 47(7) : 2711 -2736.
  • 4Zhang Juntan, Fossorier M P C. A modified weighted bit-flipping decoding of low-density parity-check codes [ J]. IEEE Communication Letters, 2004, 8 (3): 165 - 167.
  • 5Wu Guangen, Ren Pinyi. A class of improved lowdensity parity-check codes constructed based on gallager form[ A ]. Proceedings of ICCCAS06 [ C ]. New Yok : IEEE Press, 2006. 694 - 698.
  • 6Gallager R G.Low density parity check codes[J].IEEE Trans. on Information Theory,1962,8(3):21-28.
  • 7Smith B,Ardakani M.Design of irregular LDPC codes with optimized performance-complexity tradeoff[J]. IEEE Trans. on Communications,2010,58(2):489-499.
  • 8Yuan Jianguo,Ye Wenwei,Jiang Ze,et al.A novel super-FEC code based on concatenated code for high-speed long-haul optical communication systems[J].Optics Communications, 2007, 273(2): 421-427.
  • 9Gallager R G.Low Density Parity Check Codes[M]. Cambridge, Mass: MIT Press,1963.
  • 10Hosli D,Svensson E. Low-density parity-check codes for magnetic recording[D]. 2000.

共引文献3

同被引文献44

  • 1袁建国,叶文伟,毛幼菊.光通信系统中基于LDPC码的SFEC码型研究[J].光电子.激光,2009,20(11):1450-1453. 被引量:10
  • 2Shancheng Zhao, Xiao Ma. Construction of High-Perform- ance Array-Based Non-Binary LDPC Codes With Moderate Rates[J]. IEEE Communications letters, 2016, 20(1): 13-16.
  • 3Juane. Li, Liu Ke-ke, Lin Shu, Abdel-Ghaffar. K. Alge- braic Quasi-Cyclic LDPC Codes: Construction, Low Error- Floor, Large Girth and a Reduced-Complexity Decoding Scheme [ J]. IEEE Transactions on Communications, 2014,62(8): 2626-2637.
  • 4Juhua Wang, Guohua Zhang, et al. Coset-based QC-LD- PC codes without small cycles [ J ]. IET Electronics Letters, 2014, 50(22) :1597-1598.
  • 5Yan Zhang, Fengfan Yang. The performance analysis of QC -LDPC codes constructed by Dayan sequence for coded co- operative relay [ J ]. IEEE Conference Publications, 2014, 84-88.
  • 6Yi Zhang, Xinyu Da. Construction of girth-eight QC-LD- PC codes from arithmetie progression sequence with large eolumn weight [ J]. IET Electronics Letters, 2015, 51 (16) :1257-1259.
  • 7Kou Y, Lin S, et al. Low- density parity- check codes based on finite geometries: a rediscovery and new results [J]. IEEE Transaction on Information Theory, 2001, 47 (7) : 2711-2736.
  • 8Sina Khazraie. A PEG Construction of Finite-Length LDPC Codes with Low Error Floor[J].IEEE Communications let- ters, 2012, 16(8), 1288-1291.
  • 9Lan Lan, Shu Lin. Construction of Quasi- Cyclic LDPC Codes for AWGN and Binary Erasure Channels: A Finite Field Approach [ J ]. IEEE Transactions on Communica- tions, 2007, 53(7): 2429-2458.
  • 10S Song, B. Zhou, S. Lin, A unified approach to the con- struetion of binary and nonbinary quasi-cyclic LDPC codes based on finite field [ J ]. IEEE Trans. Commun. , 2009, 57(1) :71-81.

引证文献7

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部