期刊文献+

一类非线性差分方程的解的动力学行为(英文) 被引量:2

Dynamical behavior of the solution for a nonlinear difference equation
原文传递
导出
摘要 研究一类有理推归序列的解的动力学行为,利用针对非线性差分系统的变分迭代方法,获得确保该系统平衡解的存在性、全局渐近稳定性及不稳定性的若干充分条件,推广和改进了已知的一些结果(Cinar 2004),并对理论结果进行了数值模拟。 In this paper,we study the dynamical behavior of the solutions for a rational recursive sequence. By using a variational iteration method for system of nonlinear difference equation,some sufficient conditions have been obtained to ensure the existence,global asymptotic stability and unstability of the equilibrium point for the nonlinear difference equation.These criteria generalize and improve some known results( Cinar 2004). Moreover,some numerical simulations are given to illustrate our results.
出处 《重庆邮电大学学报(自然科学版)》 CSCD 北大核心 2015年第6期844-848,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 The Natural Science Foundation Project of CQ CSTC(CSTC 2012jjA 20016,CSTC2012jjA 40035) The National Natural Science Foundation of China(51005264,11101298)
关键词 差分方程 平衡点 动力学行为 正解 渐近稳定性 difference equation equilibrium point dynamical behavior positive solution asymptotic stability
  • 相关文献

参考文献14

  • 1AGARWAL R P. I)ifl~rence equations and inequalities [M]. New York: Marcel Dekker, Inc., 2000: 971.
  • 2ERBE 14, BAOGUOA J, PETERSON A. Nonoseillation for second order sublinear dynamic equations on time scales [J]. J Comput Appl Math, 2009, 232(2): 594-599.
  • 3SHOJAEI M, SAADATI R, ADIBI H. St~d)ility and peri- odic character of a rational third order difference equation [ J ]. Chaos Solitons & Fractals ,2009,9(3 ) : 1203-1209.
  • 4WANG ehangyou, WANG shu, YAN xiangping et al. Os- cillation of a class of partial functional population model [J]. J Math Anal Appl, 2010, 368 (1): 32-42.
  • 5H wamong, YAN xingxue. Global attractivity in a ration- al recursive sequence [ J ]. Appl Math Comput, 2003, 145(1) :1-12.
  • 6HU linxia, HE wansheng, XIA hongming. Global asymp- totic behavior of a rational difference equation [ J ]. Appl Math Comput, 2012, 218 (15) : 7818-7828.
  • 7CAMOUZIS E, I,ADAS G. 1)ynamies of third-order ration- al difference equations with open problems and conjectures [ M ]. Boca Raton : Chapman & HalI/CRC, 2007:221.
  • 8MIGDA J. Asymptotically polynomial solutions of differ- ence equations [ J ]. Advances in Difference Equations, 2013, 2013: 92.
  • 9ELSAYED E M. Solutions of rational difference system of order two[J]. Math Comput Mod, 2012 (55) :378-384.
  • 10MARWAN A. Dynamics of a rational difference equation [J]. Appl Math Comput, 2006, 176 (2) : 768-774.

同被引文献8

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部