摘要
研究一类有理推归序列的解的动力学行为,利用针对非线性差分系统的变分迭代方法,获得确保该系统平衡解的存在性、全局渐近稳定性及不稳定性的若干充分条件,推广和改进了已知的一些结果(Cinar 2004),并对理论结果进行了数值模拟。
In this paper,we study the dynamical behavior of the solutions for a rational recursive sequence. By using a variational iteration method for system of nonlinear difference equation,some sufficient conditions have been obtained to ensure the existence,global asymptotic stability and unstability of the equilibrium point for the nonlinear difference equation.These criteria generalize and improve some known results( Cinar 2004). Moreover,some numerical simulations are given to illustrate our results.
出处
《重庆邮电大学学报(自然科学版)》
CSCD
北大核心
2015年第6期844-848,共5页
Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金
The Natural Science Foundation Project of CQ CSTC(CSTC 2012jjA 20016,CSTC2012jjA 40035)
The National Natural Science Foundation of China(51005264,11101298)
关键词
差分方程
平衡点
动力学行为
正解
渐近稳定性
difference equation
equilibrium point
dynamical behavior
positive solution
asymptotic stability