期刊文献+

新型天然气发动机涡轮增压器热机疲劳研究

Research on Thermo-mechanical Fatigue of New Natural Gas Engine Turbocharger
下载PDF
导出
摘要 涡轮增压器蜗壳在周期性冷热交变的载荷下工作,容易产生热应力,导致蜗壳产生热机疲劳开裂,从而影响发动机性能甚至功能性失效。文章在传统的柴油发动机涡轮增压器研究的基础上,对新型的天然气发动机涡轮增压器进行了研究。通过实验研究气体与金属换热及对流情况,建立了气体与固体热交换模型,此模型可为后续的热机疲劳分析提供换热边界。同时对蜗壳进行了热机疲劳有限元数值分析,并与柴油发动机涡轮增压器蜗壳热机疲劳模型进行对比,根据分析结果,提出了天然气发动机涡轮增压器蜗壳冷热冲击试验的参考标准及蜗壳材料选择的指导性意见。 The turbocharger volute is easy to generate thermal stress in case of working under the load of periodic cold and hot alternation which will lead to thermo-mechanical fatigue cracking of volute and influence engine performance and even cause functional failure.This article researched new natural gas engine turbocharger on the basis of research of traditional diesel engine turbocharger.The gas and sol-id heat exchange model was established which could provide heat exchange boundary for subsequent heat engine fatigue analysis according to situation of experiment research gas,metal heat exchange and convection current.Meanwhile finite element numerical analysis of heat engine fatigue for the volute was done which was compared with heat engine fatigue model of diesel engine turbocharger volute and the reference standard for hot and cold impact experience of natural gas engine turbocharger volute and guidance suggestion of volute material selection had been put forward according to analysis results.
作者 郭玮 郭合忠
出处 《西部交通科技》 2015年第10期104-108,112,共6页 Western China Communications Science & Technology
关键词 天然气发动机 柴油发动机 涡轮增压器 蜗壳 热机疲劳 Natural Gas Engine Diesel engine Turbocharger Volute Heat engine fatigue
  • 相关文献

参考文献13

  • 1NGVs and fuel consumption worldwide NGVA ( Europe natural & bio Gas Vehicle Association)EEB/OL]. http:// www. ngvaeurope, eu/worldwide- ngv- statistics,Sep- tember 2013.
  • 2Manuel lage. An overview of global NGV development& http.//www, unece, org/fileadrnin/DAM/energy/se/ pp/wpgas/22VVPG_ Jan2012/25Jan/3 _ Lage. pdf [ EB/ QL]. Jan 2012. UN,WPG2012. Geneva.
  • 3William Diem, Turbocharging Boosting Demand for CNG Vehicles in Europe, WardsAuto http://wardsauto, com/ ar/turbocharing_ cng_ europe_ 100308 [-EB/OL]. March 2010.
  • 4Ahdad F., Groskreutz M. ,Wang H. , TMF design optimi- zation for automotive turbochargers turbine housings [J]. ASME Turbo Expo2007,2007, Paper no. GT2007- 28233,551 - 557.
  • 5Bist S. , Kannusamy R., Tayal P. , Liang E. , Thermome- chanical fatigue crack growth and fatigue prediction for turbine housings[J]. 9th Internal Conference on Turbo- chargers and Turbocharging, 2010, London, 207 - 215.
  • 6Henry Guo,Xiaowei Du, and Daniel Wang. A Novel De- sign and Validation for Turbine Housing Inlet Flange [J]. SAE Technical Paper 2013- 01 -2645,2013,doi 10, 4271/2013 - 01 - 2645.
  • 7Wei Guo,Henry Guo, Xiaowei Du, and Daniel Wang. Tur- bine Housing Boss Design in Turbocharger Application [J]. SAE Technical Paper2014 - 01 - 2849, 2014, doi: 10.4271/2014-01 -2849.
  • 8John H. Lienhard IV & John H. Lienhard V. A heat trans- fer textbookEM], third edition, Phlogiston Press, 2002:19 - 26.
  • 9Warren M. Rohsenow et ol. Handbook of heat transfer FM]. third edition,McGraw-Hi11,1998:5.2- 5.32.
  • 10John B. Heywood. Internal combustion engine funda- mentalsEM]. McGraw- Hill, 1988 53 - 54.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部