期刊文献+

一种改进的粒子群优化算法惯性权值递减策略 被引量:2

An Improved Particle Swarm Optimization Algorithm with the Decreasing Strategy of Inertia Weight
下载PDF
导出
摘要 结合粒子群优化(PSO)算法的特点,分析惯性权值的关键性作用。在此基础上提出一种改进的非线性惯性权值递减策略。同时利用两种基准函数对该策略进行测试。实验结果表明,在参数设置均相同的条件下,改进后的权值递减策略在算法迭代初期具有较好的多样性,有利于跳出局部极值,在迭代后期具有更好的全局寻优能力。当维数不变时,随着种群规模以及最大迭代次数的相应增加,改进后的权值递减策略在收敛精度指标上要明显优于对比算法。 Combining with the particle swarm optimization (PSO) algorithm characteristics, it analyzed the key role of inertia weight in this paper. The improved nonlinear inertia weight decreasing strategy was proposed on this basis. Simultaneously the strategy was tested by applying two reference functions. The experimental results showed that the improved strategy is endowed better diversity in the initial stage of the algorithm, it is advantageous to get rid of the affect of the local extremum and enjoys better global optimization ability in the later iterations on the same condition. When the dimension unchanged and with the addition of population size and the maximum number of iterations, the improved nonlinear inertia weight decreasing strategy is superior to the contrast algorithm in the convergence precision.
作者 冯浩 李现伟
出处 《蚌埠学院学报》 2015年第6期21-24,共4页 Journal of Bengbu University
基金 宿州学院一般科研项目(2014yyb03) 宿州学院科研平台开发课题(2014YKF44)
关键词 粒子群优化算法 惯性权值 递减策略 particle swarm optimization algorithm inertia weight decreasing strategy
  • 相关文献

参考文献7

  • 1Kennedy J, Eberhart R. Particle Swarm Optimization [ C ].Proceedings of the 4th IEEE Neural Networks, Piscataway 1995 : 1942 - 1948.
  • 2International Conference on N J: IEEE Service Center, Shi Y, Eberhart R. Empirical Study of Particle Swarm Opti- mization [ C ]. Proceedings of the IEEE Congress on Evolu- tionary Computation, Piscataway N J : IEEE Press, 1999 : 1945 - 1950.
  • 3Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimi- zation [ C ]. Proceedings of the IEEE Congress on Evolution- ary Computation, San Francisco,2001 : 101 - 106.
  • 4陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56. 被引量:309
  • 5郭文忠,陈国龙.粒子群优化算法中惯性权值调整的一种新策略[J].计算机工程与科学,2007,29(1):70-72. 被引量:14
  • 6鹿艳晶,马苗.基于灰色粒子群优化的快速图像匹配算法[J].计算机工程与应用,2009,45(10):157-159. 被引量:8
  • 7Gamier S, Gautrais J, Theraulaz G. The biological princi- ples of swarm intelligence[ J]. Swarm Intelligence ,2007,30 (1) :3 -31.

二级参考文献23

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2罗钟铉,刘成明.灰度图像匹配的快速算法[J].计算机辅助设计与图形学学报,2005,17(5):966-970. 被引量:72
  • 3Eberhart R C,Kennedy J.A new optimizer using particle swarm theory[C]//The 6th International Symposium on Micro Machine and Human Science,Nagoya, 1995:39-43.
  • 4Kennedy J.Eberhart R C.Particle swarm optimization[C]//Proceeding of the IEEE International Conference on Neural Networks, 1995: 1942 - 1948.
  • 5van den Bergh F.An analysis of particle swarm optimizer[D].South Mrica:Department of Computer Science,University of Pretoria, 2002.
  • 6刘莹,曹剑中,许朝晖,田雁,付同堂,王锋.基于灰度相关的图像匹配算法的改进[J].应用光学,2007,28(5):536-540. 被引量:41
  • 7Kennedy J, Eberhart R. Particle swarm optimization[A]. International Conference on Neural Networks[C]. Perth, Australia: IEEE, 1995. 1942-1948.
  • 8Elegbede C. Structural reliability assessment based on particles swarm optimization [ J ]. Structural Safety,2005, 27 (10):171-186.
  • 9Robinson J, Rahmat-Samii Y. Particle swarm optimization in electromagnetics[J]. IEEE Transactions on Antennas and Propagation, 2004, 52 (2). 397-406.
  • 10Salman A, Ahmad I, A1-Madani S. Particle swarm optimization for task assignment problem[J]. Microprocessors and Microsystems, 2002, 26 (8): 363-371.

共引文献323

同被引文献16

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部