期刊文献+

基于量子策略的布谷鸟搜索算法研究 被引量:3

Research on Cuckoo Search Algorithm Based on Quantum Mechanism
下载PDF
导出
摘要 针对基本布谷鸟搜索算法存在局部搜索能力较弱、收敛速度偏慢和精度较低等缺点,文中研究了基于量子策略的布谷鸟搜索算法。借助于量子策略使布谷鸟的寻巢搜索行为具有多样性,并在此基础上提出3种改进局部搜索能力的措施:引入惯性权值、自适应减小鸟窝主人发现外来鸟蛋的概率、随机扰动增量的优化,并通过对两类基准测试函数的寻优结果对比,证明提出的改进融合算法精度更高,且具有更大的优势。 Aiming at the disadvantages of the basic cuckoo search( CS) algorithm such as weaker local search ability,slower convergence rate and poorer optimization precision,this paper studies the quantum inspired cuckoo search algorithm. Firstly,we enabled the cuckoos with heterogeneous search behaviors towards the nests with the help of quantum mechanism. Then three measures which can improve the cuckoos' local search capability were introduced on this basis,namely the introduction of a similar inertia weight to the equation of renewal of the nests positions,an adaptively decreased probability of the cuckoo nests being replaced with a randomly generated new one,and the improvement of increment with a random disturbance. A graphical comparison of the original CS algorithm and the quantum one used for optimization of two kinds of benchmark functions shows that the latter algorithm possesses greater advantages over the original one with a better precision.
出处 《电子科技》 2015年第12期40-44,共5页 Electronic Science and Technology
关键词 CS算法 量子策略 基准函数 局部搜索 cuckoo search algorithm quantum mechanism benchmark functions local search
  • 相关文献

参考文献14

  • 1Pinar Civicioglu, Erkan Besdok. A conceptual comparison of the cuckoo - search, particle swarm optimization, differential evolution and artificial bee colony algorithms [ J ]. Artificial Intelligence Review,2013,39 (4) : 315 - 346.
  • 2Yang X S, Deb S. Cuckoo search via Lrvy flights [ C ]. Paris : Proceding of World Congress on Nature & Biologically In- spired Computing,2009.
  • 3Han K H, Kim J H. Genetic quantum algorithm and its appli- cation to combinatorial optimization problem [ C ]. Proceding of IEEE Congress on Evolutionary Computation,2000.
  • 4Sun J, Feng B, Xu W B. Particle swarm optimization with par- ticles having quantum behavior [ C]. Roma: Proceding of Congress on Evolutionary Computation,2004.
  • 5Pavlyukevich I. Lrvy flights, non - local search and simulated annealing [ J ]. Computational Physics ,2007,226:1830 - 1844.
  • 6Salvador Elias Venegas - Andraca. Quantum walks: a com- prehensive review [J]. Quantum Information Processing, 2012,11 (5) :1015 - 1106.
  • 7杜利敏,阮奇,冯登科.基于共轭梯度的布谷鸟搜索算法[J].计算机与应用化学,2013,30(4):406-410. 被引量:23
  • 8Mantegna R N. Fast, accurate algorithm for numerical simula- tion of Levy stable stochastic processes [ J ]. Physical Review E,1992(49) :451 -458.
  • 9Yang X S, Dab S. Engineering optimization by cuckoo search [ J ]. International Journal of Mathematical Modeling and Nu- merical Optimization,2010,1 (d) :330 - 343.
  • 10Schrdinger E. An undulatory theory of the mechanics of atoms and molecules [ J ]. Physics Review, 1926,28 (6) : 1049 - 1070.

二级参考文献7

共引文献22

同被引文献18

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部