期刊文献+

线性菲涅尔太阳能系统光学性能研究与优化 被引量:12

Optical Performance Investigation and Optimization of a Linear Fresnel Reflector Solar Collector
原文传递
导出
摘要 为研究与优化线性菲涅尔太阳能系统的光学性能,本文采用蒙特卡罗光线追迹法(MCRT)自编程建立了整个系统的三维光学模型。基于此,分析了不同反射镜型式、瞄准位置、形面误差以及地理位置等对系统光学性能的影响规律,优化了反射镜几何参数与瞄准位置。结果表明,不同镜面型式下系统性能均存在最优值,此时圆柱面与抛物面镜光学性能几乎一样。对于吸热管热流分布,可通过优化设计反射镜瞄准线来提高热流分布均匀性,一定的形面误差也会改善其均匀性。在地理上,该系统在北纬20°~50°的范围内年均光学效率在52%~37%之间,可在我国大部分地区应用。 A 3D Monte Carlo ray tracing model was developed in FORTRAN for a linear Fresnel reflector solar collector in order to investigate and optimize its optical performance.The performance of three typical mirrors,the effects of the mirror aim lines,slope error,and location,etc.were investigated.The results show that the optimal radius and focal length could be found for the cylindrical and parabolic mirrors,respectively.The optimized cylindrical mirror could achieve the same performance as that of the optimized parabolic mirror.The uniformity of the concentrated solar flux on the absorber tube could be improved by designing the aim lines and using the mirror with a certain slope error.In addition,the LFR system whose yearly mean optical efficiency ranges between52%and 37%from N20° to N50° could be applied in most area of China.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第12期2551-2556,共6页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目(No.51436007) 国家高技术研究发展计划(863项目)(No.2013AA050502)
关键词 太阳能 线性菲涅尔 复合抛物面二级反射器 蒙特卡罗光线追迹 光学性能 solar energy linear fresnel reflector compound parabolic collector(CPC) Monte Carlo ray tracing(MCRT) Fresnel optical performance
  • 相关文献

参考文献14

  • 1H:iberle A. Zahler C. Lerchenmfiller H. et al. The So-larmundo Line Focussing Fresnel Collector. Optical and Thermal Performance and Cost Calculations [C]// Pro- ceedings of the 2002 SolarPACES International Sympo- sium, 2002.
  • 2杜春旭,王普,马重芳,吴玉庭.线性菲涅耳聚光系统无遮挡镜场布置的光学几何方法[J].光学学报,2010,30(11):3276-3282. 被引量:31
  • 3Abbas R, Montes M J, Piera M, et al. Solar Radiation Concentration Features in Linear Fresnel Reflector Ar- rays [J]. Energy Conversion and Management, 2012, 54(1): 133 144.
  • 4Grena R, Tarquini P. Solar Linear Fresnel Collector Using Molten Nitrates as Heat Transfer Fluid [J]. Energy, 2011, 36(2): 1048-1056.
  • 5HeYL, Xiao J, Cheng Z D, et al. A MCRT and FVM Coupled Simulation Method for Energy Conversion Pro- cess in Parabolic Trough Solar Collector [J]. Renewable Energy, 2011, 36(3): 976-985.
  • 6Qiu Y, He Y L, Cheng Z D, et al. Study on Optical and Thermal Performance of a Linear Fresnel Solar Reflector Using Molten Salt as HTF With MCRT and FVM Meth- ods [J]. Applied Energy, 2015, 146:162-173.
  • 7Cheng Z D, He Y L, Xiao J, et al. Three-Dimensional Numerical Study of Heat Transfer Characteristics in the Receiver Tube of Parabolic Trough Solar Collector [J]. In- ternational Communications in Heat and Mass Transfer, 2010, 37(7): 782-787.
  • 8Oommen R, Jayaraman S. Development and Performance Analysis of Compound Parabolic Solar Concentrators With Reduced Gap Reflector [J]. Energy Conversion and Management, 2001, 42(11): 1379-1399.
  • 9He Y L, Cui F Q, Cheng Z D, et al. Numerical Sim- ulation of Solar Radiation Transmission Process for the Solar Tower Power Plant: From the Heliostat Field to the Pressurized Volumetric Receiver [J]. Applied Thermal Engineering, 2013, 61(2): 583-595.
  • 10Shuai Y, Xia X L, Tan H P. Radiation Performance of Dish Solar Concentrator/Cavity Receiver Systems [J]. So- lar Energy, 2008, 82(1): 13-21.

二级参考文献19

  • 1K. W. Boer, J. A. Duffie. Advances in Solar Energy-An Annual Review of Research and Development[M]. New York: Plenum Press, 1985, 428-433.
  • 2I. Reda. A. Andreas. Solar position algorithm for solar radiation applications[J]. Solar Energy, 2004, 76(5): 577-589.
  • 3G. Montero, J. M. Escobar, E. Rodr′guez et al.. Solar radiation and shadow modelling with adaptive triangular meshes[J]. Solar Energy, 2009, 83(7): 998-1012.
  • 4J. A. Duffie. Solar Engineering of Thermal Processes[M]. New York: Jone Wiley & Sons, 2006, 326.
  • 5A. Rabl. Active Solar Collectors and Their Applications[M]. New York: Oxford Press,1985, 19-120.
  • 6S. A. Kalogirou. Solar thermal collectors and applications[J]. Progress in Energy and Combustion Science, 2004, 30(3): 231-295.
  • 7F. W. Lipps, L. L. Vant-Hull. Shading and blocking geometry for a solar tower concentrator with rectangular mirrors[R]. New York: ASME paper 74-WA/Sol-11, presented at the winter annual Meeting, 1974, 1-7.
  • 8L. L. Vant-Hull, A. F. Hildebrandt. Solar thermal power system based on optical transmission[J]. Solar Energy, 1976, 18(1): 31-39.
  • 9A. Niewienda, F. D. Heidt, Sombrero. A pc-tool to calculate shadows on arbitrarily oriented surfaces[J]. Solar Energy, 1996, 58(4-6): 253-263.
  • 10R. Budin, L. Budin. A mathematical model for shading calculations[J]. Solar Energy, 1982, 29(4): 339-349.

共引文献30

同被引文献107

引证文献12

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部