期刊文献+

接触热阻对燃料电池温度分布影响的数值模拟 被引量:8

Numerical Investigation the Temperature Distribution of PEM Fuel Cell With the Effect of Thermal Contact Resistance
原文传递
导出
摘要 本文采用三维、非等温、以及考虑各向异性扩散层性质的燃料电池模型分析了气体扩散层和流场板肋板之间的接触热阻对电池温度分布和性能的影响。计算结果表明,接触热阻对电池最高温度及温度分布均有很大影响。电池输出电压为0.3 V时,有接触热阻工况电池最大温度高于无接触热阻工况约8.5 K。此外,有接触热阻计算工况扩散层内温度变化平缓,而无接触热阻计算工况扩散层内温度变化较快。因此,对于燃料电池温度分布的准确预测,不能忽略接触热阻的影响。 In this paper,a three dimensional non-isothermal PEM fuel cell model with anisotropic gas diffusion layer(GDL)is applied to investigate the effect of the thermal contact resistance(TCR)between flow plate rib and GDL on cell temperature distribution and performance.From the numerical results,it is found that both the maximum cell temperature and the temperature distribution are greatly affected by TCR.When the output cell voltage equals to 0.3 V,the maximum cell temperature with TCR is about 8.5 K larger than that of without TCR.Furthermore,the temperature of GDL changes more smaller in thermal contact resistance cases,however,the temperature distribution of the GDL is behaved more steeper in the cases without thermal contact resistance.Therefore,it is concluded that,to accurately predict the temperature distribution of a PEM fuel cell,the thermal contact resistance between flow plate rib and gas diffusion layer cannot be ignored.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第12期2661-2665,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金重点项目(No.51136004) 国家973项目(No.G2011CB707203)
关键词 质子交换膜燃料电池 数值模拟 温度分布 接触热阻 PEM fuel cell numerical simulation temperature distribution thermal contact resistance
  • 相关文献

参考文献18

  • 1Vie P J S, Kjelstrup S. Thermal Conductivities From Tem- perature Profiles in the Polymer Electrolyte Fuel Cell [J]. Electrochimica Acta, 2004, 49(7): 1069-1077.
  • 2Wang M H, Guo H, Ma C F. Temperature Distribution on the MEA Surface of a PEMFC with Serpentine Chan- nel Flow Bed [J]. Journal of Power Sources, 2006, 157(1): 181-187.
  • 3Lin H, Cao T F, Chen L, et al. In Situ Measurement of Temperature Distribution within a Single Polymer Elec- trolyte Membrane Fuel Cell [J]. International Journal of Hydrogen Energy, 2012, 37(16): 11871-11886.
  • 4Thomas A, Maranzana G, Didierjean S, et al. Measure- ments of Electrode Temperatures, Heat and Water Fluxes in PEMFCs: Conclusions About Transfer Mechanisms [J]. Journal of the Electrochemical Society, 2012, 160(2): F191-F204.
  • 5J.u H C, Wang C Y, Cleghorn S, et al. Nonisothermal Modeling of Polymer Electrolyte Fuel Cells Ii. Paramet- ric Study of Low-Humidity Operation [J]. Journal of The Electrochemical Society, 2006, 153(2): A249-A254.
  • 6Ju H C, Wang C Y, Cleghorn S, et al. Nonisothermal Modeling of Polymer Electrolyte Fuel Cells - I. Experi- mental Validation [J]. Journal of The Electrochemical So- ciety, 2005, 152(8): A1645 A1653.
  • 7Sui P C, Kumar S, Djilali N. Advanced Computational Tools for Pem Fuel Cell Design: Part 1. Development and Base Case Simulations [J]. Journal of Power Sources, 2008, 180(1): 410-422.
  • 8Sui P C, Kumar S, Djilali N. Advanced Computational Tools for Pem Fuel Cell Design Part 2. Detailed Exper- imental Validation and Parametric Study [J]. Journal of Power Sources, 2008, 180(1): 423-432.
  • 9Wu H, Berg P, Li X. Steady and Unsteady 3D Non-Isothermal Modeling of Pem Fuel Cells with the Effect of Non-Equilibrium Phase Transfer [J]. Applied Energy, 2010, 87(9): 2778-2784.
  • 10Birgersson E, Noponen M, Vynnycky M. Analysis of a Two-Phase Non-Isothermal Model for a Pefc [J]. Journal of The Electrochemical Society, 2005, 152(5): A1021.

二级参考文献9

  • 1WANG Chaoyang.Fundamental models for fuel cell engineering[J].Chem Rev,2004,104 (10):4727-4766.
  • 2SIEGEL N P,ELLIS M W,NELSON D J,et al.A two-dimensional computational model of a PEMFC with liquid water transport[J].J Power Sources,2004,128(2):173-184.
  • 3SADIQ AL-BAGHDADI M A R,SHAHAD ALJANABI H A K.Parametric and optimization study of a PEM fuel cell performance using three-dimensional computational fluid dynamics model[J].Renew Energy,2007,32(7):1077-1101.
  • 4PARK J,LI Xianguo.Effect of flow and temperature distribution on the performance of a PEM fuel cell stack[J].J Power Sources,2006,162(1):444-459.
  • 5HERTWIG K,MARTENS L,KARWOTH R.Mathematical modelling and simulation of polymer electrolyte membrane fuel cells:model structures and solving an isothermal one-cell model[J].Fuel Cells,2002,2(2):61-77.
  • 6DUTTA S,SHIMPALEE S,ZEE J W.Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell[J].Int J Heat Mass Transfer,2001,44(11):2 029-2 042.
  • 7SHIMPALEE S,GREENWAY S,SPUCKLER D,et al.Predicting water and current distributions in a commercial-size PEMFC[J].J Power Sources,2004,135(1/2):79-87.
  • 8MENG Hua,WANG Chaoyang.Large-scale simulation of polymer electrolyte fuel cells by parallel computing[J].Chem Eng Sci,2004,59(16):3 331-3 343.
  • 9WANG Ying,YANG Tae-Hyun,LEE Won-Yong,et al.Three-dimensional analysis for effect of channel configuration on the performance of a small air-breathing proton exchange membrane fuel cell (PEMFC)[J].J Power Sources,2005,145(2):572-581.

共引文献5

同被引文献138

引证文献8

二级引证文献38

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部