期刊文献+

快速动态自适应小波配点法

A Fast Dynamically Adaptive Wavelet Collocation Method Based on the Precise Time-Integration
原文传递
导出
摘要 动态自适应多尺度小波配点法(AWCM)能有效地模拟具有间歇性的物理现象,此方法是近几年发展起来的非常新颖的数值计算方法。为了增强该方法识别与跟踪解的奇异性的能力,并提高数值计算稳定性与计算效率,将精细时程积分算法与之相结合形成了快速动态自适应多尺度小波配点法。为了实现这一算法,给出了构造动态自适应网格配点集的新方法,构建了以小波(或尺度函数)系数为变量的时程推进公式。通过求解一维Burgers方程,证明了方法具有更加良好的数值计算性质。 The dynamically adaptive wavelet collocation method(AWCM) is a new method developed recently for simulating the physical phenomenon with intermittency efficiently.In order to enhance the stability and efficiency of computation and the ability of identifying and tracking singularity,a new method is established combined the precise time-integration method with AWCM.In this method,a new way to generate dynamic adaptive grids is proposed and the time marching equations as functions of wavelet(or scale function) coefficients are set up.Validated by solving one- dimensional Burgers equation,it is found that the new method provided in this paper presents good performance of computation.
作者 张文华 宇波
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第12期2694-2698,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51325603)
关键词 小波 动态自适应网格 精细时程积分 间歇性 wavelet dynamically adaptive grids precise time-integration intermittency
  • 相关文献

参考文献7

  • 1Glowinski R, Lawton W, Ravaehol M, et al. Wavelets Solution of Li0near and Nonlinear Elliptic, Parabolic and Hyperbolic Problems in one Space Dimension [J]. Com- puting Methods in Applied Sciences and Engineering, SIAM Philadelphia, 1990, 55-120.
  • 2Olegv Vasilyev, Samuel Paolucci, Mihir Sen. A Multilevel Wavelet Collocation Method for Solving Partial Differen- tial Equations in a Finite Domain [J]. Journal of Compu- tationM Physics, 1995, 120:33-47.
  • 3Olegv Vasilyev, Samuel Paolucci. A Dynamically Adap- tive Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain [J]. Jour- nal of Computational Physics, 1996, 125:498 512.
  • 4Olegv Vasilyev, Christopher Bowman. Second-Generation Wavelet Collocation Method for the Solution of Par- tial Differential Equations [J]. Journal of Computational Physics, 2000, 165:660:93.
  • 5Farge M, Schneider K, Kevlahan N. Non-Gaussianity and Coherent Vortex Simulation for Twodimensional Turbu- lence Using an Adaptive Orthogonal Wavelet Basis [J]. Phys, Fluids, 1999, 11(2): 187-201.
  • 6Goldstein D E, Vasilyev O V. Stochastic Coherent Adap- tive Large Eddy Simulation Method [J]. Phys Fluids, 2004, 16(2): 497-513.
  • 7钟万勰.结构动力方程的精细时程积分法[J].大连理工大学学报,1994,34(2):131-136. 被引量:513

二级参考文献6

共引文献512

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部