期刊文献+

线性时滞系统稳定的充分必要条件

A Sufficient and Necessary Stability Condition for Linear Systems with Delay
下载PDF
导出
摘要 提出一个新的线性时滞系统稳定的充分必要条件,与以前的结论不同的是,我们的结论的表达形式更容易数值计算。开发相应的二种收敛算法,解决系统时滞独立稳定判断和时滞相关稳定的时滞界估计。本文给出范数有界不确定性时,系统稳定的充分条件。文末给出的数值实例证明本文结果降低计算复杂度,改进了时滞估计保守性。 This note provided a new sufficient and necessary stability condition for time-delay systems. Unlike previous methods, the mathematical descriptions here are easy to numeric computation. Two algorithms were developed and used to solve the problems of both time-independent and time-dependent stability. When time-varying norm-bounded uncertainties appear in a delay system, a robust delay-dependent stability condition was given. Examples were provided to demonstrate the reduced complexity and conservatism of the proposed conditions.
出处 《计算技术与自动化》 2015年第4期7-10,共4页 Computing Technology and Automation
基金 国家自然科学基金资助项目(51277030)
关键词 时滞线性系统 充分必要条件 算法 不确定性 linear systems with delay sufficient and necessary condition algorithms uncertainties
  • 相关文献

参考文献14

  • 1Shengyuan Xu and James Lam, Improved Delay-Dependent Stability Criteria for Time-Delay SystemsEJ~. IEEE Trans- actions on Automatic Control, Vol. 50, NO. 3, March2005:384--387.
  • 2俞元洪.超越函数det(aij--bieix-δijλ)零点全分布在复平面左半部的代数判据[J].科学通报,1984,29(23):14132-1415.
  • 3张作元.滞后型方程z(t)-Az(t)+Bz(t-r)全时滞稳定的代数判据[J].数学通报,1986,31(23):1768-1771.
  • 4RICHARD J. Time-delay systems: An overview of some recent advances and open problems[J]. Automatiea, 2003 (39).. 1667--1694.
  • 5张冬梅,俞立.线性时滞系统稳定性分析综述[J].控制与决策,2008,23(8):841-849. 被引量:41
  • 6LI X,C. E. de Souza. Criteria for robust stability and stabi- lization of uncertain linear systems with state--delay[J]. Automatica, 1997, 33: 1657-1662.
  • 7MOON Y S,PARK P,KWON W H,LEE Y S. Delay-depend- ent robust stabilization of uncertain state--delayed systems [J]. Int. J. Control, 2001,74:1447-1455.
  • 8NICULESCU S I,NETO A T,DION J M,DUGARD L. De- lay-dependent stability of linear systems with delayed state.. An LMI approach, in Proc. 34th IEEE Conf[J]. Decision and Control, New Orleans, LA, 1995:1495--1496.
  • 9PARK P. A delay-dependent stability criterion for systems with uncertain time-invariant delays[J]. IEEE Trans. Au- tom. Control, 1999,44(4) :876--877.
  • 10FRIDMAN E,SHAKED U. An improved stabilization meth- od for linear time-delay systems[J]. IEEE Trans. Autom. Control, 2002, 47(11): 931 - 1937.

二级参考文献75

  • 1廖小昕.动力系统的稳定性理论和应用[M].北京:国防工业出版社,2000.15-30.
  • 2刘和涛.一类时滞微分系统无条件稳定的代数判定.控制理论与应用,1986,1:106-110.
  • 3张作元.滞后型方程x(t)=Ax(f)+Bx(t-r)全时滞稳定的代数判据.数学通报,1986,31(23):1768-1771.
  • 4Repin Y M. Quadratic Lyapunov functionals for systems with delay [J]. Prikladnaya Matematikal Mehanika, 1965, 24(3): 564-566.
  • 5Brierley S D, Lee E B. Solution of the equation A(z)X (z)+X(z)B(z)=C(z) and its application to the stability of generalized linear systems [J]. Int J of Control, 1984, 40(6): 1065-1075.
  • 6Lee E B, Lu W S, Wu N E. A Lyapunov theory for linear time-delay systems [J]. IEEE Trans on Automatic Control, 1986, 31(8): 259-261.
  • 7Agathoklis P, Foda S. Stability and the matrix Lyapunov equation for delay differential systems[J]. Int J of Control, 1989, 49(2):417-432.
  • 8Lefschitz. Stabilty of nonlinear control systems[M]. New York: Academic Press, 1965.
  • 9Razumikin B S. On the stability of systems with delay [J]. Prikladnava Matematikal Mekhanika, 1956, 20 (4) : 500-512.
  • 10Trinh H, Aldeen M. On robustness and stabilization of linear systems with delayed nonlinear perturbations[J]. IEEE Trans on Automatic Control, 1997, 42 (7): 1005-1007.

共引文献46

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部