期刊文献+

基于深度图像利用遮挡信息确定下一最佳观测方位 被引量:3

Determining Next Best View Based on Occlusion Information in Depth Image
下载PDF
导出
摘要 文中提出一种新颖的利用深度图像中的遮挡信息确定下一最佳观测方位的方法.该方法首先从某一观测方位获取视觉目标的一幅深度图像,然后根据已获得的深度图像中的遮挡信息确定出下一最佳观测方位.主要贡献在于:(1)提出深度图像中最大深度差相邻点的概念,利用其与深度图像中的遮挡边界点可获取遮挡区域外接表面信息;(2)一种基于投影降维思想的遮挡区域外接表面最佳小平面集合的确定方法,用于确定下一最佳观测方位;(3)一种基于最佳小平面集合的下一最佳观测方位确定算法.所提方法无需预先获取视觉目标的先验知识及将摄像机的观测位置限定在固定表面上,适用于具有不同型面的视觉目标.实验结果验证了所提方法的可行性和有效性. This paper proposes a novel next best view approach based on occlusion information in a depth image.At first,a depth image of visual object is obtained from one view,and then the next best view is determined by the occlusion information in depth image.This work is distinguished by three contributions.The first contribution is the concept of maximal depth difference adjacent point,which is combined with the occlusion boundary point to obtain external surface information of the occluded region.The second contribution is a determining method based on projection dimension reduction for the optimal small plane set of the occluded region's external surface,which will be used in the process of determining the next best view.The third contribution is a specific next best view algorithm based on the optimal small plane set.The proposed approach does not need the priori knowledge of visual object or limit the observation position of the camera on a fixed surface.In addition,the approach is suitable for the visual object with different surface.Experimental results demonstrate its feasibility and effectiveness.
出处 《计算机学报》 EI CSCD 北大核心 2015年第12期2450-2463,共14页 Chinese Journal of Computers
基金 国家自然科学基金(61379065) 河北省自然科学基金(F2014203119) 机器人技术与系统国家重点实验室开放研究基金(SKLRS-2010-ZD-08)资助
关键词 深度图像 遮挡信息 下一最佳观测方位 最大深度差相邻点 最佳小平面集合 depth image occlusion information next best view maximal depth difference adjacent point optimal small plane set
  • 相关文献

参考文献16

  • 1Bottino A, Laurentini A. What's NEXT? An interactive next best view approach. Pattern Recognition, 2006, 39 (1) : 126-132.
  • 2Trummer M, Munkelt C, Denzler J. Online next-best-view planning for accuracy optimization using an extended E-criterion / /Proceedings of the 20tb International Conference on Pattern Recognition. Istanbul, Turkey, 2010: 1642-1645.
  • 3Haner S, Heyden A. Covariance propagation and next best view planning for 3D reconstruction/ /Proceedings of the 12th European Conference on Computer Vision. Florence, Italy, 2012: 545-556.
  • 4Connolly C. The determination of next best views/ /Proceedings of the IEEE International Conference on Robotics and Automation. Missouri, USA, 1985: 432-435.
  • 5Maver J, Bajcsy R. Occlusion as a guide for planning the next view. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(5): 417-432.
  • 6Whaite P, Ferrie F P. Autonomous exploration: Driven by uncertainty. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(3): 193-205.
  • 7Pi to R. Solution to the next best view problem for automated surface acquisition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(0): 1016-1030.
  • 8Banta J E, Wong L M, Dumont C, Abidi M A. Next-best?view system for autonomous 3-D object reconstruction. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2000, 30(5): 589-598.
  • 9Chen S y, Li Y F. Automatic sensor placement for model?based robot vision. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2004, 34 ( 1 ): 393- 408.
  • 10Li Y F, Liu Z G. Information entropy-based viewpoint planning for 3-D object reconstruction. IEEE Transactions on Robotics, 2005, 21(3): 324-337.

二级参考文献10

  • 1周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 2Ito K,Sakane S.Robust view-based visual tracking with detection of occlusions.In:Proceedings of the IEEE International Conferrence on Robotics and Automation,Seoul,Korea,2001.1207-1213.
  • 3Wu Y,Yu T,Hua G.Tracking appearances with occlusions.In:Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,Madison,Wisconsin,USA,2003.789-795.
  • 4Tao H,Sawhney H,Kumar R.Object tracking with Bayesian estimation of dynamic layer representations.IEEE Transactions on Pattern Analysis And Machine Intelligence,2002,24(l):75-89.
  • 5Gentile C,Camps O.Segmentation for robust tracking in the presence of severe occlusion.IEEE Transactions on Image Processing,2004,13(2):166-178.
  • 6Bhasin S,Chaudhuri S.Depth from defocus in presence of partial self-occlusion.In:Proceedings of the 8th IEEE International Conference on Computer Vision,Vancouver,Canada,2001.488-493.
  • 7Park J C,Kim S M,Lee K H.3D mesh construction from depth images with occlusion.In:Lecture Notes in Computer Science.Berlin:Springer Berlin/ Heidelberg,2006.770-778.
  • 8Rhee F C H,Shin Y S.A fast numerical method for finding the optimal threshold for image segmentation.In:Proceedings of the IEEE International Conference on Fuzzy Systems,St.Louis,MO,US,2003.984-989.
  • 9Batenburg K J,Sijbers J.Optimal threshold selection for tomogram segmentation by projection distance minimization.IEEE Transactions on Medical Imaging,2009,28(5):676-686.
  • 10徐平,邵定宏,魏楹.最佳阀值分割和轮廓提取技术及其应用[J].计算机工程与设计,2009,30(2):437-439. 被引量:16

共引文献4

同被引文献20

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部