摘要
高准确度的短期风电功率预测对大规模风电的安全并网运行有着重要意义。为了改进功率快速波动时预测系统的准确度,针对风电场输出功率序列随时间、空间呈现非平稳性变化的特征,提出基于经验模态分解(Empirical Mode Decomposition,EMD)和支持向量机(Support Vector Machine,SVM)的组合预测模型。该方法先利用EMD将建模样本中的功率序列按不同波动尺度分解为相对平稳的独立正交分量,以减少不同特征分量的相互影响;然后对分解出来的每个正交分量分别建立预测模型,通过网格寻优法优化SVM参数,提高对不同尺度功率波动的预测准确度;最后采用改进的IOWA加权方式将各分量预测模型的预测值加权得到总的预测功率。短期预测算例结果表明,EMDSVM模型下采用改进的IOWA加权方式与单一多项式和支持向量机相比,具有更高的功率预测准确度。
出处
《电气应用》
2015年第21期24-29,共6页
Electrotechnical Application
基金
国家科技支撑计划(2013BAA02B02)