摘要感应式非接触输电因工作频率相对较低、传递功率大以及技术相对成熟而得到广泛关注,但充电距离短、对错位较敏感限制了其应用。在分析充电效率模型的基础上,通过优化线圈结构、匝数、匝间距、绕线方式和导线直径等设计提高系统传输效率,同时依据实际参数计算设计了一台6.5 k W的试验装置,实际充电效率达到80%以上,表明线圈优化合理。
7Huh J, Lee S W, Lee W Y, et al width inductive power transfer system electrical vehicles [J]. IEEE Transactions Narrow- for online on PowerElectronics, 2011, 26(12): 3666-3679.
3Tesla N, Apparatus for transmitting electrical energy: US 1119732[P]. 1914-10.
4Yagi H, Uda S. Feasibility of electric power transm- ission by radio waves[C]. The 3rd Pan-Pacific Academic Conference, Tokyo, Japan, 1926.
5Brown W C. Thermionic diode rectifier[J]. Micro- wave Power Engineering, 1968, 1: 295-298.
6Brown W C. The combination receiving antenna and rectifier[J]. Microwave Power Engineering, 1968, 2 273-275.
7Matsumoto H. Numerical estimation of SPS microwave impact on ionospheric environment[J] Acta Astronaut, 1982, 9(8): 493-497.
8Brown W C. The history of power transmission by radio waves[J]. IEEE Transactions on Microwave Theory abd Technioues, 1984, 32(9): 1230 - 1242.
9Brown W C, Eves E E. Beamed microwave power transmission and its application to space[J]. IEEE Transactions on Microwave Theory and Technioues, 1992, 40(6): 1239-1250.