期刊文献+

一种求解分布控制问题的含参预处理最小残量法(英文)

Parameterized preconditioned MINRES method for solving distributed control problems
下载PDF
导出
摘要 近年来,提出了一些求解约束优化分布控制问题的方法,其中最常用的方法是先离散偏微分方程,然后求解离散得到的线性方程组.文献中提出了一些Krylov子空间预处理方法用来求解该线性方程组.通过分析张晓莹等提出的块对角预处理矩阵(Zhang X Y,Yan H Y.Huang Y M.On preconditionedMINRES method for solving the distributed control problems.Commun Appl Math Comput,2014,28:128-132.),构造了一个含参数的块对角预处理线性方程组,并运用含参数预处理最小残量方法求解该线性方程组.预处理矩阵的谱分析表明当参数大于1时,含参预处理线性方程组的谱分布更加集中.数值实验结果验证了含参数的预处理最小残量方法对于求解分布式控制问题是有效的. In recent years, many efforts have been made to numerically solving the constrained optimization distributed control problems, in which the most common one is to discretize the partial differential equation first and then solve the resulting system of linear equations. A number of preconditioned Krylov subspace methods have been constructed to solve the resulting system of linear equations in the literature. In this paper, by analyzing the block-diagonal preconditioner presented by Zhang, et al. (Zhang X Y, Yan H Y, Huang Y M. On preconditioned MINRES method for solving the distributed control problems. Commun Appl Math Comput, 2014, 28: 128-132.), we propose a parameterized block-diagonally preconditioned linear system where a parameterized preconditioner is utilized and the preconditioned MINRES method is applied to solve the system of linear equations. The spectral analysis of the proposed preconditioned matrix shows that the spectral distribution of the parameterized preconditioning matrix should be much more clustered if the parameter is greater than 1. Numerical Experiments show that the preconditioned MINRES method is efficient for solving the distributed control problems.
出处 《应用数学与计算数学学报》 2015年第4期395-403,共9页 Communication on Applied Mathematics and Computation
基金 Project supported by the National Natural Science Foundation of China(11571156)
关键词 预处理最小残量法 含参预处理矩阵 谱分布 preconditioned MINRES method parameterized preconditioning matrix spectral distribution
  • 相关文献

参考文献11

  • 1Bai Z Z. Block preconditioners for elliptic PDE-constrained optimization problems [J]. Com- puting, 2011, 91: 379-395.
  • 2Lass O, Valleyjos M, Douglas C C. Implementation and analysis of multigrid schemes with finite elements for elliptic optimal control problems [J]. Computing, 2009, 84: 27-48.
  • 3Lions J L. Optimal Control of Systems [M]. Berlin and Heidelberg: Springer-Verlag, 1968.
  • 4Rees T, Dollar H S, Wathen A J. Optimal solvers for PDE-constrained optimization [J]. SIAM J Sci Comput, 2010, 32: 271-298.
  • 5Bai Z Z, Ng M K, Wang Z Q. Constraint preconditioners for symmetric indefinite matrices [J]. SIAM J Matrix Anal Appl, 2009, 31: 410-433.
  • 6Keller C, Gould N I M, Wathen A J. Constraint preconditioning for indefinite linear systems [J]. SIAM J Matrix Anal Appl, 2000, 21: 1300-1317.
  • 7Murphy M F, Golub G H, Wathen A J. A note on preconditioning for indefinite linear systems [J]. SIAM J Sci Comput, 2000, 21: 1969-1972.
  • 8Pan J Y, Ng M K, Bai Z Z. New preconditioners for saddle point problems [J]. Appl Math Comput, 2006, 172: 762-771.
  • 9Silvester D J, Wathen A J. Fast iterative solution of stabilised Stokes systems. Part II" using general block preconditioners [J]. SIAM J Numer Anal, 1994, 31: 1352-1367.
  • 10Wathen A J, Silvester D J. Fast iterative solution of stabilised Stokes systems. Part I: using simple diagonal preconditioners [J]. SIAM J Numer Anal, 1993, 30: 630-649.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部