期刊文献+

由Dixon求和定理导出的超几何函数变换式 被引量:1

Hypergeometric transformations from Dixon's summation theorem
下载PDF
导出
摘要 受Rathie和Rakha工作的启发,利用著名的Dixon求和定理建立一个主体变换式.从这个变换式出发,通过适当地选取参数推导出多个超几何函数的变换式.特别地,得到一个近似匹配的_5F_4-型超几何函数的封闭性求和式. Inspired by the work of Rathie and Rakha, we establish a main theorem with the help of Dixon's summation theorem. From this theorem, we obtain several new hypergeometric transformations by some famous summation formulas. Especially, we obtain a new closed summation formula of a nearly-poised hypergeometric series 5F4 by gamma functions.
机构地区 上海大学理学院
出处 《应用数学与计算数学学报》 2015年第4期431-440,共10页 Communication on Applied Mathematics and Computation
基金 国家自然科学基金青年科学基金资助项目(11201291) 上海市自然科学基金青年资助项目(12ZR1443800) 上海市重点学科建设资助项目(S30104)
关键词 超几何变换式 超几何求和式 Dougall求和定理 Dixon求和定理 近似匹配求和定理 hypergeometric transformation hypergeometric summation Dougall's summation theorem Dixon's summation theorem nearly-poised summation theorem
  • 相关文献

参考文献9

  • 1Slater L J. Generalized Hypergeometric Functions [M]. Cambridge: Cambridge University Press, 1966.
  • 2Rathie A K, Rakha M A. A study of new hypergeometric transformations [J]. J Phys A: Math Theor, 2008, 41: 445202.
  • 3Cvijovid D. A new hypergeometric transformation of the Rathie-Rakha type [J]. Applied Math- ematics Letters, 2011, 24(3): 340-343.
  • 4Andrews G E, Askey R, Roy R. Special Functions [M]. Cambridge: Cambridge University Press, 2000.
  • 5Bailey W N. Some identities involving generalized hypergeometric series [J]. Proc London Math Soc, 1929, 29: 503-516.
  • 6Chu W C. A new proof for a terminating "strange" hypergeometric evaluation of Gasper and Rahman conjectured by Gosper [J]. Comptes Rendus de rAcaddmie des Sciences-Sdrie 1, Mathdmatique~ 1994, 318: 505-508.
  • 7Whipple F J W. Some transformations of generalized hypergeometric series [J]. Proc London Math Soc, 1927, 26: 257-272.
  • 8Bailey W N. Generalized Hypergeometric Series [M]. Cambridge: Cambridge University Press, 1935.
  • 9Whipple F J W. On well-poised series, generalised hypergeometric series having parameters in pairs, each pair with the same sum [J]. Proc London Math Soe, 1926, 24: 247-263.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部