期刊文献+

基于模糊扩展卡尔曼滤波的轮毂电机驱动车辆纵向速度估计算法 被引量:10

Estimation of Longitudinal Speed of In-wheel Motor Driven Vehicle Using Fuzzy Extended Kalman Filter
下载PDF
导出
摘要 为了获取轮毂电机驱动车辆的纵向速度,设计了基于轮速信号和车身加速度信号的扩展卡尔曼滤波的估计算法,建立了研究对象的离散状态方程和测量方程,并采取不同的扩展卡尔曼滤波器对测量信号进行滤波去噪处理和车辆纵向速度估算.通过模糊控制器,对车速估计滤波器的估算参数进行实时动态调节,实现了估计算法的自适应性.研究结果表明,在路面附着系数为1.00的良好路面上,估算得到的车速和动力学模型输出的实际车速误差小于2%;在路面附着系数为0.25的路面上,最大估算误差小于10%. In order to obtain the longitudinal speed of the in-wheel motor driven vehicle,a new estimation algorithm for the extended Kalman filter was designed based on signals of wheel speed and vehicle body acceleration. First,the discrete state equation and measurement equation of the research object were established. Then,two extended Kalman filters( EKFs),including a noise filter and an estimation filer,were designed to deal with measuring signals and estimate the vehicle 's longitudinal speed,respectively. Finally,the parameters obtained by the estimation filer were adjusted through the fuzzy controller to ensure the adaptivity of the algorithm. The simulation results show that the error between the estimated speed and the actual speed was less than 2% when the road adhesion coefficient was 1. 00,and the error was less than 10% when the road adhesion coefficient was 0. 25.
出处 《西南交通大学学报》 EI CSCD 北大核心 2015年第6期1094-1099,共6页 Journal of Southwest Jiaotong University
基金 国家自然科学基金资助项目(51105032)
关键词 纵向速度估计 扩展卡尔曼滤波 模糊控制 自适应控制 电动轮驱动车辆 longitudinal velocity estimation extended Kalman filtering fuzzy control adaptive control electric wheel driven vehicles
  • 相关文献

参考文献13

  • 1GENG C, MOSTEFAI L, DENAI M, et al. Direct Yaw- moment control of an in-wheel motored electric vehicle based on body slip angle fuzzy observer[J]. IEEE/ ASME Transaction on Mechatronics, 2009, 56 ( 5 ) : 1141-1419.
  • 2HARTIKAINEN L, PETRY F, WESTERMANN S. Longitudinal wheel slip during ABS braking[J]. Vehicle System Dynamics, 2015, 53(2) : 237-55.
  • 3KOMG, JANGDY, JOO J W, et al. Estimating the crash responses of a vehicle from the other size vehicle tested[J]. International Journal of Crashworthiness, 2015, 20(2) : 165-76.
  • 4姜桂艳,常安德,李琦,伊峰.基于出租车GPS数据的路段平均速度估计模型[J].西南交通大学学报,2011,46(4):638-644. 被引量:18
  • 5LEVENBERG E. Estimating vehicle speed with embedded inertial sensors [ J ]. Transportation Research Part C : Emerging Technologies, 2014, 46 : 300-308.
  • 6支晨蛟,唐慧明.基于视频角点特征匹配的车速检测方法[J].计算机工程,2013,39(12):176-180. 被引量:8
  • 7周聪,肖建,王嵩.多采样率卡尔曼滤波器在汽车状态估计中的应用[J].西南交通大学学报,2012,47(5):849-854. 被引量:11
  • 8KIM D H, CHOI K H, LI K J, et al. Performance of vehicle speed estimation using wireless sensor networks : a region-based approach[ J ]. Journal of Supercomputing, 2014, 71(6): 2101-2120.
  • 9HODGSON D, MECROW B C, GADOUE S M, et al. Effect of vehicle mass changes on the accuracy of Kalman filter estimation of electric vehicle speed[J]. IET Electrical Systems in Transportation, 2013, 3 (3) : 67-78.
  • 10CHEN Y, WANG J. Adaptive vehicle speed control with input injections for longitudinal motion independent road frictional condition estimation[ J]. IEEE Trans. Vch. Teehnol. , 2011, 60 (3) : 839- 848.

二级参考文献40

共引文献36

同被引文献136

引证文献10

二级引证文献141

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部