期刊文献+

局部联合稀疏指数表示的高光谱图像异常检测

Hyperspectral Image Anomaly Detection Based on Local Joint Sparse Representation Index
下载PDF
导出
摘要 针对稀疏表示在高光谱图像异常检测中取得了较好的检测效果,采用局部联合稀疏指数表示的方法,即将局部光谱稀疏指数和局部空间稀疏指数相结合。讨论了窗口设计对检测结果的影响。提出了将自动子空间划分和基于局部联合稀疏指数检测方法相结合的算法,提高了检测的效果。使用合成和真实的高光谱图像数据分别进行了仿真实验,实验结果表明,所提出的方法在检测效果上有一定程度的提高,且不同的窗口设计对检测结果也会产生影响。 Sparse representation had achieved very good results in hyperspectral imaging anomaly detections. A local joint sparse index method was employed, which combined local spectral sparse index and local spatial sparse index. The influence of the window design on the detection results was discussed. The algorithm combining the adaptive subspace decomposition and the detection method based on local joint sparse index was proposed to improve the detection effect. With synthetic and real hyperspectral imaging datasets in the simulation experiment, the results show that the algorithms utilizing the new models could improve the effectiveness of the detection results to a certain degree, and different window designs have an impact on the results.
作者 张丽丽
出处 《光电工程》 CAS CSCD 北大核心 2015年第12期41-46,共6页 Opto-Electronic Engineering
基金 大庆师范学院青年基金(12ZR15)
关键词 高光谱图像 异常检测 稀疏表示 自动子空间划分 hyperspectral image anomaly detection sparse representation adaptive subspace decomposition
  • 相关文献

参考文献9

  • 1Reed I S, YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution [J]. IEEE Transactions on Aeoustics Speech & SignalProeessing(S0096-3518), 1990, 38(10): 1760-1770.
  • 2Borghys D, KAsen I, Achard V, et al. Comparative evaluation of hyperspectral anomaly detectors in different types of background [C]// Algorithms & Technologies for Multispectral Hyperspectral & Ultraspeetral Imagery, International Society for Optics and Photonies, San Diego, USA, Aug 12-16, 2012, 8390(12): 1106-1112.
  • 3YUAN Zongze, SUN Hao, J[ Kefeng, et al. Local Sparsity Divergence for Hyperspectral Anomaly Detection [J]. IEEE Geoseienee & Remote SensingLetters(S1545-598X), 2014, 11(10): 1697-1701.
  • 4宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报,2012,34(2):268-272. 被引量:73
  • 5赵春晖,李晓慧,朱海峰.空间4-邻域稀疏表示的高光谱图像目标检测[J].哈尔滨工程大学学报,2013,34(9):1171-1178. 被引量:17
  • 6袁宗泽,孙浩,计科峰,李志勇.局部非负稀疏编码的高光谱目标检测方法研究[J].信号处理,2014,30(5):561-568. 被引量:6
  • 7ZHANG Junping, ZHANG Ye, ZOU Bin, et al. Fusion Classification Of Hyperspectral Image Based On Adaptive Subspace Decomposition [C]// International Conference on Image Processing, Vancouver, BC, Sep 10-13, 2000, 3: 472-475.
  • 8ZHANG Ye, Desai M D, ZHANG Junping. Adaptive subspace decomposition for hyperspectral data dimensionality reduction [C]// International Conference on lmage Proeessing, Kobe, Japan, Oct24-28, 1999, 2: 326-329.
  • 9WANG Yulei, ZHAO Chunhui, WANG Ying. Anomaly detection using subspace band section based RX algorithm [C]//IEEE International Conference on Multimedia Technology, Hangzhou, China, Jul 26-28, 2011 : 3436-3439.

二级参考文献30

  • 1李智勇,匡纲要,郁文贤,薛绮.基于高光谱图像主成分分量的小目标检测算法研究[J].红外与毫米波学报,2004,23(4):286-290. 被引量:27
  • 2Chan J C W and Paelinckx D. Evaluation of random forest and adaboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery[J]. Remote Sensing of Environment, 2008, 112(6): 2999-3011.
  • 3Shahshahani B M and Landgrebe D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(5) 1087-1095.
  • 4Breiman L. Random forests [J]. Machine Learning, 2001, 45(1): 5-32.
  • 5Wright J, Ma Y, Mairal J, et al. Sparse representations for computer vision and pattern recognition [J]. Proceedings of the IEEE, 2010, 98(6): 1031-1044.
  • 6Raina R, Battle A, Lee H, et al. Self-taught learning: transfer learning from unlabeled data[C]. International Conference on Machine Learning, Corvallis, 2007: 759-766.
  • 7Qiao Li-shan, Chen Song-can, and Tan Xiao-yang. Sparsity preserving projection with applications to face recognition [J] Pattern Recognition, 2010, 43(1): 331-341.
  • 8Han Ya-hong, Wu Fei, Zhuang Yue-ting, et al. Multi-label transfer learning with sparse representation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2010, 20(8): 1110-1121.
  • 9Aharon M, Elad M, and Bruckstein A. K-SVD: an algorithm for designing over-complete dictionaries for sparse representation [J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
  • 10Mairal J, Bach F, Ponce J, ct al.. Online learning for matrix factorization and sparse coding [J]. Journal of Machine Learning Research, 2010, 11(1): 19-60.

共引文献89

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部