期刊文献+

掺锗石英光纤的稳态和瞬态γ辐射效应研究 被引量:2

Effect of Steady-state and TransientγRadiation on Ge-doped Quartz Optical Fiber
下载PDF
导出
摘要 开展了掺锗石英光纤在1.0×10^(-4)~0.5Gy(Si)/s剂量率下的稳态γ辐照实验和10~6~10~9 Gy(Si)/s剂量率下的瞬态γ辐照实验。结果表明:光纤辐射感生损耗与辐照总剂量呈饱和指数关系,与色心浓度微分方程推导出的结论相一致。在辐照总剂量相同的情况下,光纤辐射感生损耗随辐照剂量率的增大而增大。辐照期间有光注入较无光注入时的光纤辐射感生损耗低,证实了光褪色效应的存在。对实验用650、850和1 310nm 3个波长,光纤辐射感生损耗随波长的增大而减小。与光纤稳态辐射感生损耗相比,光纤瞬态辐射感生损耗要大得多;光纤瞬态辐射感生损耗峰值与脉冲总剂量呈线性关系,这与饱和指数关系在低剂量下的泰勒展开近似一致。 Ge-doped quartz optical fibers were irradiated by steady-stateγwith dose rate of 1.0×10^-4-0.5 Gy(Si)/s and transientγ with dose rate of 10~6-10~9 Gy(Si)/s.The results show that the radiation induced loss in optical fiber satisfies saturate exponential relationship with total dose,which agrees with the conclusion developed from color center concentration differential equation.The radiation induced loss in optical fiber increases with dose rate at a given total dose.The photobleaching effect was validated by the result that radiation induced loss in optical fiber is less with transmitted light during irradiation.The radiation induced loss in optical fiber decreases with increasing wavelength from 650 to 1 310 nm.The transient radiation induced loss in optical fiber is much larger than steady-state radiation induced loss.The peak magnitude of transient radiation induced loss in optical fiber is linear with pulse total dose,which agrees with Taylor expansions approximation of saturate exponential relationship at low total dose.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第12期2288-2292,共5页 Atomic Energy Science and Technology
关键词 掺锗石英光纤 稳态 瞬态 辐射感生损耗 Ge-doped quartz optical fiber steady-state transient radiation induced loss
  • 相关文献

参考文献12

  • 1FRIEBELE E J, GRISCOM D L, SIGEL G H. Defect centers in a germanium doped silica core optical fiber[J]. Journal of Applied Physics, 1974, 45(8): 3 424-3 428.
  • 2GRISCOM D L, FRIEBELE E J, LONG K J, et al. Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus doped silica glass and opti- cal fibers[J]. Journal of Applied Physics, 1983, 54(7): 3 743-3 762.
  • 3GRISCOM D L. Trapped electron centers in pure and doped glassy silica: A review and synthesis [J]. Journal of Non-Crystalline Solids, 2011,357:1 945-1 962.
  • 4GRISCOM D L. Self trapped holes in pure silica glass: A history of their discovery and character- ization and an example of their critical signifi- cance to industry[J]. Journal of Non-Crystalline Solids, 2006, 352:2 601-2 617.
  • 5GUSAROV A I, DOYLE D B. Modeling of gamma-radiation impact on transmission charac- teristics of optical glasses [C] //Photonics for Space and Radiation Environments. Francis Berghmans: SPIE, 2002: 78-85.
  • 6FRIEBELE E J, GINGERICH M E. Photob- leaching effects in optical fiber waveguides[J]. Applied Optics, 1981, 20(19): 3 448-3 452.
  • 7GILBERT R M. Photobleaching of radiation- induced color centers in a Germania-doped glass fiber[J]. IEEE Transactions on Nuclear Science, 1982, NS-29(6): 1 484-1 488.
  • 8LESKOVAR B. Radiation effects on optical data transmission systems[J]. IEEE Transactions on Nuclear Science, 1989, 36(1): 543-551.
  • 9SIGEL G H, Jr, FRIEBELE E J, MARRONE M J, et al. An analysis of photobleaching tech- niques for the radiation hardening of fiber optic da'ta links[J]. IEEE Transactions on Nuclear Science, 1981, NS-28(6): 4 095-4 101.
  • 10PANTELIDES S T. The physics of SiOs and its interfaces [M]. New York: Pergamon Press, 1978: 232-248.

二级参考文献18

  • 1Mattern P L,Watkins L M,Skoog C D,et al.The effects of radiation on the absorption and luminescence of fiber optic waveguides and material[J].IEEE Trans on Nuclear Science,1974,21:81-95.
  • 2Evans B D,Jr Sigel G H.Perraanent and transient radiation induced losses in optical fibers[J].IEEE Tram on Nuclear Science,1974,21:113-118.
  • 3Golob J E,Lyon P B,Looney L D.Transient radiation effects in low-loss optical waveguides[J].IEEE Trans on Nuclear Science,1977,24(6):2164-2168.
  • 4Evans B D,Sigel G H,Jr Langworthy J B,et al.The fiber optic dosimeter on the navigational technology satellite 2[J].IEEE Tram on Nuclear Science,1978,25(6):1619-1624.
  • 5Friebele E J,Sigel G H,Gingerich M E.Radiation response of fiber optic waveguides in the 0.4 to 1.7 μm region[J].IEEE Trans on Nuclear Science,1978,25(6):1261-1266.
  • 6Share S,McCracken R M.The effect of temperature on the response of class-clad optical waveguides to ionizing radiation[J].IEEE Trans on Nuclear Science,1978,25(6):1288-1292.
  • 7Englert T J.Effect of radiation damage in optical fibers[R].PB-210308,1986.
  • 8Friebele E J.Optical fiber waveguide in radiation environments[J].Optical Engineering,1979,18(6):552-561.
  • 9Friebele E J,Lyon P B,Blackburn J,et al.Interlaboratory comparison of radiation-induced attenuation in optical fibers.Part Ⅲ:Transient exposures[J].Journal of Lightwave Technology,1990,8(6):977-989.
  • 10Brannon P J,Bodette D E,MeArthur D A.The infrared transmission of low-OH fibers while exposed to nuclear radiations[R].DE92019320,1992.

共引文献3

同被引文献19

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部