期刊文献+

改进粒子群算法辨识噪声模型的卡尔曼直接转矩控制 被引量:1

Direct Torque Control Using EKF Based on Noise Model Identification by Improved Particle Swarm Algorithms
原文传递
导出
摘要 针对感应电机扩展卡尔曼滤波器状态估计中难以获得最优噪声矩阵问题,提出了一种基于改进粒子群算法辨识卡尔曼滤波器噪声矩阵的方法.通过调整粒子觅食策略对粒子群算法进行改进,运用改进算法优化滤波器噪声矩阵,再将优化的卡尔曼滤波器应用于感应电机无传感器直接转矩控制系统中.仿真结果表明,与试探法、标准粒子群算法和自适应粒子群算法相比,改进粒子群算法能够改善卡尔曼滤波器滤波性能,从而提高感应电机无传感器直接转矩控制系统的控制精度. Aiming at the problem of getting optimal noise matrix in state estimation of the extended Kalman filter in induction motor,an optimized noise matrix method,which is based on the improved particle swarm optimization algorithms,is proposed. Updated strategies are adopted in standard particle swarm optimization. Based on the improved particle swarm optimization,a global optimized noise covariance estimation method is applied to extended Kalman filter in direct torque control system. Simulation results show that the proposed method can effectively improve the performance,much better than trial and error,particle swarm optimization and adaptive particle swarm optimizatio.
出处 《昆明理工大学学报(自然科学版)》 CAS 2015年第6期58-64,共7页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学基金项目(61364008) 云南省自然科学基金项目(2009CD041 2010CD038) 云南省教育厅重点基金项目(2013Z127)
关键词 扩展卡尔曼滤波器 噪声矩阵 粒子群算法 无传感器 直接转矩控制 extended Kalman filter noise matrix particle swarm optimization sensorless direct torque control
  • 相关文献

参考文献19

  • 1Khalil H,Strangas E,Jurkovic S.Speed observer and reduced nonlinear model for sensorless control of induction motors[J].Control Systems Technology,2009,17(2):327-339.
  • 2Franois Auger,Mickael Hilairet,Josep M Guerrero,et al.Industrial Applications of the Kalman Filter:A Review[J].IEEE Transactions on Industrial Electronics,2013,60(12):5458-5470.
  • 3Václav mídl,Zdeněk Peroutka.Advantages of Square-Root Extended Kalman Filter for Sensorless Control of AC Drives[J].IEEE Transactions on Industrial Electronics,2012,59(11):4189-4196.
  • 4Buyamin S.Optimisation of the extended kalman filter for speed estimation of induction motor drives[D].Ph.D.dissertation,Newcastle University,2007.
  • 5Akesson B M,Orgensen J B,Poulsen N K,et al.A generalized autocovariance east-squares method for kalman filter tuning[J].Journal of Process control,2008,18(7):769-779.
  • 6Akesson B M,Orgensen J B,Poulsen N K,et al.A tool for kalman filter tuning[J].Computer Aided Chemical Engineering,2007,24:859-864.
  • 7Shi K,Chan T,Wong Y,Ho S.Speed estimation of an induction motor drive using extended kalman filter[J].Power Engineering Society Winter Meeting,2000(1):243-248.
  • 8Loebis D,Sutton R,Chudley J,Naeem W.Adaptive tuning of a kalman filter via fuzzy logic for an intelligent auv navigation system[J].Control engineering practice,2004,12:1531-1539.
  • 9Valappil J,Georgakis C.Systematic estimation of state noise statistics for extended kalman filters[J].AICh E Journal,2000,46(2):292-308.
  • 10Odelson B J,Lutz A,Rawlings J B.The auto covariance least-squares method for estimating covariances:application to model-based control of chemical reactors[J].Control Systems Technology,2006,14(3):532-540.

二级参考文献18

共引文献21

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部