期刊文献+

裂纹方向对剪切损伤模量的影响 被引量:5

The influence of crack direction on shear modulus of damage
下载PDF
导出
摘要 损伤力学是研究含缺陷介质损伤演化及破坏的一门学科,研究方法主要分为2种:唯象的宏观损伤力学和细观损伤力学。其中,细观力学理论更容易描述损伤过程的力学本质。对于脆性和准脆性材料,可以利用弹性力学理论来分析细观损伤机理。模拟一个受组合载荷作用且中心含一条裂纹的单元体,裂纹的方向决定了所受载荷的组合方式,其中受压剪方式作用下的裂纹还考虑了裂纹面间的摩擦效应。利用弹性力学理论的复变函数法可以分析单元体边界的位移场和应力场,通过某种平均化的方法,可得到单元体的总体平均剪应变和总体平均剪应力,进而得到与裂纹方向有关的单元体的剪切损伤模量。计算结果表明,裂纹面间的摩擦效应对剪切损伤模量的影响不可忽视。此种方法还可用来分析其他与损伤相关的力学性能。 Damage mechanics is a subject that studies the evolution and failure of the medium containing defect.There are two main research methods:phenomenological macro damage mechanics and meso damage mechanics.Among them,the meso mechanics theory is more likely to describe the mechanical essence of the damage.The theory of elasticity can be used to analyze the meso-mechanism of the damage for brittle and quasi-brittle solids.A representative element with one micro crack under various loads is studied.In these combined loads,the frictional effect of crack surfaces is considered under compression and shearing.Based on the theory of elasticity,using the method of function of the complex variable,the displacement field and stress field of the boundary can be obtained.It can get the total average shear strain and the average shear stress by some averaging method,further can get the shear damage modulus of the element which related to the direction of the crack.The calculate results show that the effect of the shear damage modulus caused by friction can not be neglected.The method can also be used to analyze other mechanical properties related to damage.
作者 崔崧 吕嫣
出处 《沈阳师范大学学报(自然科学版)》 CAS 2015年第4期459-462,共4页 Journal of Shenyang Normal University:Natural Science Edition
基金 辽宁省教育厅科学研究一般项目(L2014442)
关键词 剪切模量 损伤 弹性力学 位移场 应力场 摩擦效应 shear modulus damage elasticity displacement field stress field frictional effect
  • 相关文献

参考文献12

  • 1KRAJCINOVIC D,FONSEKA G U.The continuous damage theory of brittle materials[J].J Appl Mech,1981,48(4):809-824.
  • 2TALREJA R.Damage development in composites:Mechanics and model[J].J Strain Anal Eng,1989,24(4):215-222.
  • 3CHOW C L,WANG J.An anisotropic theory of elasticity for continuum damage mechanics[J].Int J Fract,1987,33(1):3-16.
  • 4SWOBODA G,YANG Qiang.An energy-based damage model of geomaterials(part 1and part 2)[J].Int J Sol S,1999,36(12):1719-1755.
  • 5BENVENSITE Y.On the Mori-Tanaka,s method in cracked solids[J].Mech Res Comm,1986,13(4):193-201.
  • 6HUANG Y,HU K,CHANDRA A.A generalized self-consistent mechanics method for microcracked solids[J].J Mech Phys Solids,1994,42(8):1273-1291.
  • 7BASISTA M,GROSS D.The sliding crack model of brittle deformation:an internal variable approach[J].Int J Sol S,1998,35(5):487-509.
  • 8陆明万,罗学富.弹性理论基础:下册[M].2版.北京:清华大学出版社,2001.
  • 9HALM D,DRAGON A.An anisotropic model of damage and frictional sliding for brittle materials[J].Euro J Mec A,1998,17(3):439-460.
  • 10DRAGON A,HALM D,DESOYER T.Anisotropic damage in quasi-brittle solids:modeling,computational issues and applications[J].Comput Meth,2000,183(3/4):331-352.

二级参考文献19

  • 1钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报(自然科学版),1989,17(3):40-47. 被引量:58
  • 2崔崧,黄宝宗,张凤鹏.准脆性材料的弹塑性损伤耦合模型[J].岩石力学与工程学报,2004,23(19):3221-3225. 被引量:11
  • 3Mazars J. A description of micro-and macro scale damage of concrete structure[J]. Engineering Fracture Mechanics, 1986, 25(5/6): 729-737
  • 4Krajcinovic D, Fonseka G U. The continuous damage theory of brittle materials (part 1 and part 2)[J]. J. Appl. Mech., 1981, 48(4): 809-824
  • 5Sidoroff F. Description of anisotropic damage application to elasticity[A]. In: Hult J, Lemaitre J ed. Proc. of IUTAM Colloquium.Physical Nonlinearities in Structural Analysys[C]. New York:Springer-Verlag, 1980, 237~244
  • 6Swoboda G, Yang Q. An energy-based damage model of geomaterials(part 1 and part 2)[J]. Int. J. Solids Structures, 1999, 36(12): 1719-1755
  • 7Basista M, Gross D. The sliding crack model of brittle deformation:an internal variable approach[J]. Int. J. Solids Structures, 1998,35(5/6): 487-509
  • 8Dragon A, Halm D, Desoyer T Anisotropic damage in quasi-brittle solids: modeling, computational issues and applications[J]. Comput.Methods Appl. Mech. Engng., 2000, 183(3/4): 331-352
  • 9陆明万,罗学富.弹性理论基础:下册[M].2版.北京:清华大学出版社,2001.
  • 10KRAJCINOVIC D,FONSEKAGU.The continuous damage theory of brittle materials[J].J ApplMech,1981,48(4):809-824.

共引文献10

同被引文献9

引证文献5

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部