期刊文献+

一种随机游走图像自动分割算法 被引量:1

An automatic random walker algorithm for image segmentation
下载PDF
导出
摘要 为了解决传统随机游走算法需要过多的人工干预因素,限制了算法的通用性,提出一种自动随机游走图像分割方法—SWRW算法。首先应用二次分水岭进行预分割,将预分割形成的若干同质区域取代传统算法中的节点来建立无向图;利用色调均值差制定准则自动选取种子区域并对它们进行标记,将彩色直方图作为区域描述算子,采用巴氏系数和高斯权函数建立区域间相似性权函数;最后应用狄利克雷边界条件,实现图像分割。该方法运算速度快,避免了用户的繁琐操作,实现了完全自动分割。结果表明,与其他相关方法比较具有更好的鲁棒性和分割精度。 In order to solve the problem that requires some factors by manual in the traditional random walker algorithm, limit the generality of the algorithm, an automatic random walker (SWRW) image segmentation method is proposed. Firstly, image is segmented into many small homogeneous regions by secondary watershed pre-segmentation algorithm, then the homogeneous regions are used to build an undirected graph, instead of pixels. Standards have been formulated for the mean hue difference, which is used to select and make signs of seed regions, color histogram is used as a descriptor to represent the region color feature statistics, then Bhattacharyya coefficient and Gaussian weighting function are used to describe the similarity of adjacent regions. Finally, high-quality segmentation results can be achieved by solving Dirichlet boundary condition. The designed method reduces the runtime significantly which is very feasible for real-time image processing, it simplifies the user interactive operations as well as improves the segmentation accuracy and robustness of random walker algorithm. The experimental results show SWRW method has superior performance compared to the other related methods.
出处 《信息技术》 2015年第12期75-79,共5页 Information Technology
基金 教育部博士点基金资助项目(20113227110010) 江苏省高校自然科学基金资助项目(10KJB520004) 江苏省普通高校研究生科研创新计划基金资助项目(CXZZ11_0575)
关键词 随机游走 二次分水岭 色调均值差 巴氏系数 狄利克雷边界条件 random walker secondary watershed mean hue difference Bhattacharyya distance Dirichlet boundary condition
  • 相关文献

参考文献3

二级参考文献25

  • 1邓继雄,李志舜,梁红.确定RBF神经网络参数的新方法[J].微处理机,2006,27(4):48-49. 被引量:12
  • 2苏小红,侯秋香,马培军,王亚东.RBF神经网络的混合学习算法[J].哈尔滨工业大学学报,2006,38(9):1446-1449. 被引量:15
  • 3何源,罗予频,胡东成.基于测地线活动区域模型的非监督式纹理分割[J].软件学报,2007,18(3):592-599. 被引量:15
  • 4Wieclawek W, Pietka E. Live wire based 3D segmentation method [C] //Proceedings of the 29th IEEE Annual International Conference of Engineering in Medicine and Biology Society, Paris, 2007: 5645-5648.
  • 5Sundaramoorthi G, Yezzi A, Mennucci A C. Coarse to-fine segmentation and tracking using sobolev active contours [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 30(5): 851-864.
  • 6Brodersen A, Museth K, Porumbescu S, et al. Geometric texturing using level sets [J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14(2) ;: 277-288.
  • 7Kohli P, Torr P H S. Dynamic graph cuts for efficient inference in Markov random fields [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29 (12) : 2079-2088.
  • 8Grady L. Random walks for image segmentation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(11): 1768-1783.
  • 9Meila M, Shi J B. Learning segmentation by random walks [C] //Proceedings of Advances in Neural Information Processing, Cambridge, 2001: 873-879.
  • 10Singaraju D, Grady L, Vidal R. Interactive image segmentation via minimization of quadratic energies on directed graphs [C] //Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008 : 1-8.

共引文献24

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部