期刊文献+

间隙和进口边界层厚度对跨音速涡轮叶顶流动换热特性影响的数值研究 被引量:1

Numerical Investigations on the Flow and Heat Transfer Characteristics of the Transonic Turbine Blade Tip
下载PDF
导出
摘要 采用求解三维Reynolds-Averaged Navier-Stokes(RANS)和标准k-ω紊流模型的方法数值研究了跨音速流动条件下涡轮叶片顶部的流动传热特性,分别研究了跨音速流动条件下叶顶间隙高度及进口边界层厚度对叶顶流动换热特性的影响。研究结果表明:在气流进口总温及出口静压一定时,跨音速流动时叶顶平均换热系数远大于亚音速流动,跨音速流动时叶片前缘附近存在高换热系数区且再附着线附近的高换热系数区靠近压力面侧。在跨音速流动条件下,叶顶间隙高度对叶顶平均换热系数影响较小,但随着叶顶间隙高度的增大压力面侧分离线附近的高换热系数区和吸力面侧附近的低换热系数区面积均增大。进口边界层厚度对叶顶换热影响很小,但对吸力面侧换热有一定影响。进口边界层厚度较大时,叶顶间隙泄漏较小而横向二次流强度较大同时泄漏涡在二次流的挤压下更加靠近吸力面侧,最终分离线附近产生高换热系数区。 Numerical investigations on the flow and heat transfer characteristics of the transonic turbine blade tip using the three-dimen- sional Reynolds-Averaged Navier-Stokes(RANS) and standard k -ω turbulent model based on the CFD software ANSYS-CFX was pres- ented. The effect of the tip gap and inlet boundary layer thickness on the heat transfer characteristics of the transonic turbine blade tip was conducted. The numerical results show that averaged heat transfer coefficient on the blade tip at transonic condition is greater than that at subsonic case and the region near the blade leading edge obtains great heat transfer coefficient and the high heat transfer coeffi- cient region near the reattachment line moves towards pressure side for the transonic flow condition by comparison of the subsonic case with same total inlet temperature and outlet pressure. The influence of tip gap on the blade tip averaged heat transfer coefficient is limit- ed, but areas of the high heat transfer coefficient region near reattachment line and the low heat transfer coefficient region near suction side expands with the increase of blade tip gap. The endwall boundary layer thickness has little influence on the blade tip heat transfer performance, but noticeable impact is observed for the heat transfer coefficient of the blade suction side surface. With thicker inlet boundary layer, tip leakage vortex is weaker and more attached to the suction-side surface by the force of secondary flow, so the area near the separation line attains high heat transfer coefficient.
出处 《燃气轮机技术》 2015年第4期22-27,72,共7页 Gas Turbine Technology
基金 国家自然科学基金资助项目(51376144)
关键词 跨音速叶片 叶顶间隙 传热特性 进口边界层 数值模拟 transonic blade tip gap heat transfer characteristics inlet boundary layer numerical simulation
  • 相关文献

参考文献12

  • 1Bunker, R. S. Axial Turbine Blade Tips: Function, Design, and Durability[ J ]. Journal of Propulsion and Power, 2006,22 ( 2 ) : 271-285.
  • 2Wheeler, Andrew P. S, Atkins N R, He L. Turbine blade tip heat transfer in low speed and high speed flows [ J ]. Journal of Turbo- machinery ,2011,3(4) :349-359.
  • 3Azad G S, Han J C, Boyle R J. Heat Transfer and Flow on the Squealer Tip of a Gas Turbine Blade[ J]. ASME Journal of Turbo-machinery ,2000,122 ( 4 ) :725-732.
  • 4Kwak, J. S. ,Han, J. C. Heat Transfer Coefficient on a Gas Tur- bine Blade Tip and Near Tip Regions [ J ]. Journal of Propulsion and Power,2003,17 ( 3 ) :297-303.
  • 5杨佃亮,丰镇平.叶顶凹槽对燃气透平动叶气动性能及叶顶传热的影响[J].西安交通大学学报,2008,42(7):838-842. 被引量:14
  • 6Yang D. , Yu X. , Feng Z. Investigation of Leakage Flow and Heat Transfer in a Gas Turbine Blade Tip With Emphasis on the Effect of Rotation[ J ]. ASME Journal of Turbomachinery, 2010, 132 (4) : 041010.
  • 7李军,王金山,蒋勇,丰镇平.凹槽状动叶顶部非定常气膜冷却性能的研究[J].西安交通大学学报,2010,44(5):5-9. 被引量:9
  • 8Zhang Q, Wheeler A P S, Ligrani P M, et al. Overtip shock wave structure and its impact on turbine blade tip heat transfer [ J ]. Journal of Turbomachinery ,2011,133 (4) : 1396-1402.
  • 9Wheeler, A. P. S. , Saleh, Z. Effect of Cooling Injection on Tran- sonic T!p Flows [ J]. Journal of Propulsion and Power, 2013,29 (6) :1374-1381.
  • 10Zhang Q, He L. Tip-Shaping for HP Turbine Blade Aerothermal Performance Management [J]. Journal of Turbomachinery,2013, 135(5) :051025.

二级参考文献17

  • 1祁明旭,丰镇平.透平动叶顶部间隙流的表现形式及其对透平性能的影响[J].西安交通大学学报,2005,39(3):243-246. 被引量:25
  • 2BUNKER R S.Axial turbine blade tips:function,design,and durability[J].Journal of Propulsion and Power,2006,22(2):271-285.
  • 3BOGARD D G,THOLE K A.Gas turbine film cooling[J].Journal of Propulsion and Power,2006,22(2):249-270.
  • 4FUNAZAKI K,YOKOTA M,YAMAWAKI S.Effect of periodic passing wakes on the leading edge film cooling effectiveness[J].JSME,1995,61(7):342-349.
  • 5KWAK J S,HAN J C.Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade[J].ASME Journal of Turbomachinery,2003,125(4):648-657.
  • 6YANG Dianliang,FENG Zhenping,YU Xiaobing.Investigation of film cooling effectiveness on squealer tip of a gas turbine blade(C/CD]//Proceedings of ASME Turbo Expo 2009.New York,USA:ASME,2009:GT2009-60280.
  • 7GAO Zhihong,NARZARY D,HAN H C.Turbine blade platform film cooling with typical stator-rotor purge flow and discrete-hole film cooling[J].ASME Journal of Turbomachinery,2009,131(4):041004.
  • 8WRIGHT LM,BLAKElSA,RHEED,et al.Effect of upstream wake with vortex on turbine blade platform film cooling with simulated stator-rotor purge flow[J].ASME Journal of Turbomachinery,2009,131(2):021017.
  • 9TIMKO L P.Energy efficient engine high pressure turbine component test performance report,NASA CR-168289[R].Moffett Field,California,USA:NASA,1984.
  • 10RAI M M.L Three-dimensional Navier-Stokes simulations of turbine rotor-stator interaction:methodology[J].Journal of Propulsion and Power,1989,5(3):305-311.

共引文献21

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部