期刊文献+

二阶Lipschitz非线性系统自然观测器设计 被引量:1

Design of natural observers for second-order Lipschitz nonlinear systems
下载PDF
导出
摘要 机械系统的动力学方程是用状态速度和状态加速度描述的二阶系统,而传统的基于一阶系统表示的观测器理论并不完全适用于二阶系统,为此,文中针对一类二阶Lipschitz非线性系统提出了自然观测器的设计问题。所提出的自然观测器与被观测的二阶系统具有相同的代数结构,能保证位置估计量的导函数恰好是速度估计量。为降低结果的保守性,利用非线性函数的Lipschitz性质,将估计误差系统表示为LPV(Linear Parameter Varying)系统,在此基础上,引入参数依赖的Lyapunov函数分析估计误差系统的稳定性,并建立了自然观测器存在的充分条件。该条件表示为一组带有可调参数的线性矩阵不等式,通过求解该组线性矩阵不等式,便可获得自然观测器的增益矩阵和估计误差的收敛速率。最后通过数值例子验证了本文结果的有效性和实用性。 The dynamics of mechanical systems are described by second-order systems in terms of both state velocities and state accelerations. The traditional observer theory based on the representation of one-order form is not fully suitable to second-order systems. In this paper,the design problem of natural observers for a class of second-order Lipschitz nonlinear systems is addressed. The proposed natural observer has the same structure as the observed second-order system,which ensures that the derivative of the estimated position is indeed the estimated velocity. In order to reduce conservatism,the estimation error system is reformulated as a linear parameter varying system( LPV) by taking the properties of the Lipschitz nonlinear function into account. Based on the representation,a parameter-dependent Lyapunov function is introduced to analyze the stability of the error dynamics. A sufficient condition for the existence of natural observers is established. The sufficientcondition is expressed as a set of linear matrix inequalities with a tuning parameter. Finally,a numerical example is presented to validate the effectiveness and practicability of the proposed method.
出处 《广西大学学报(自然科学版)》 CAS 北大核心 2015年第6期1406-1413,共8页 Journal of Guangxi University(Natural Science Edition)
基金 国家自然科学基金资助项目(61164016 61573111) 广西自然科学基金重点项目(2013GXNSFDA019003) 广西自然科学基金资助项目(2015GXNSFAA139003)
关键词 二阶系统 Lipschitz系统 自然观测器 LPV方法 参数依赖LYAPUNOV函数 second-order systems Lipschitz systems natural observers LPV approach parameter-dependent Lyapunov function
  • 相关文献

参考文献24

  • 1LUENBERGER D G. Observing the state of a linear system [ J]. IEEE Transactions on Military Electronics, 1964,8(2):74-80.
  • 2LUENBERGER D G. An introduction to observers[ J]. IEEE Transactions on Automatic Control, 1971,16(6) :596-602.
  • 3BESANCON G. Remarks on nonlinear adaptive observers design [ J] . Systems & Control Letters,2000, 41 (4) : 271-280.
  • 4HA Q P,TRINH P C. State and input simultaneous estimation fora class of nonlinear systems [ J]. Automatica, 2004,40(10) : 1779-1785.
  • 5AHRENS J H,KHALIL H K. High-gain observers in the presence of measurement noise: a switched-gain approach [ J].IEEE Transactions on Automatic Control, 2009,45(4) ; 936-943.
  • 6LEE D J,PARK Y, PARK Y S. Robust sliding mode descriptor observer for fault and output disturbance estimation of un-certain systems [J]. IEEE Transactions on Automatic Control, 2012,57(11) :2928-2934.
  • 7MEURER T. On the extended Luenberger-type observer for semilinear distributed-parameter systems [ J]. IEEE Transac-tions on Automatic Control,2013 , 58(7) ; 1732-1743.
  • 8CHEN W H, LI D X, LU X M. Impulsive observers with variable update intervals for Lipschitz nonlinear time-delay sys-tems [J]. International Journal of Systems Science, 2013,44(10) : 1934-1947.
  • 9陈武华,杨武,黄敢基.基于脉冲观测器的连续时间系统输出反馈镇定[J].广西大学学报(自然科学版),2013,38(2):422-430. 被引量:4
  • 10FARZA M, M’SAAD M,FALL ML,et al. Continuous-discrete time observers for a class of MIMO nonlinear systems [ J].IEEE Transactions on Automatic Control, 2014, 59(4) : 1060-1065.

二级参考文献48

  • 1项基,苏宏业,褚健.一类不确定系统的滑模观测器设计[J].控制理论与应用,2006,23(6):996-1000. 被引量:5
  • 2LUENBERGER D G. Observers for muhivariable systems [ J ]. IEEE Transactions on Automatic Control, 1966, 11 (2): 190-197.
  • 3RAJAMANI R. Observers for Lipschitz nonlinear systems[J]. IEEE Transactions on Automatic Control, 1998, 43 (3): 397-401.
  • 4BUSAWON K K, SAIF M. A state observer for nonlinear systems [ J ]. IEEE Transactions on Automatic Control, 1999, 44(11) : 2098-2013.
  • 5DAROUACH M. Linear functional observers for systems with delays in state variables [ J ]. IEEE Transactions on Automatic Control, 2001,46(3) : 491-496.
  • 6DAROUACH M. Reduced-order observers for linear neutral delay systems [ J ]. IEEE Transactions on Automatic Control, 2005, 50(9) : 1407-1413.
  • 7MENOLD P H, FINDEISEN R, ALLGOWER F. Finite time convergent observers for nonlinear systems[ C]. Proceedings of the 42th IEEE Conference on Decision and Control. Maui, USA: IEEE Press, 2003 : 5673-5678.
  • 8RAFF T, MENOLD P H, EBENBAUER C, et al. A finite time functional observer for linear systems [ C ]. Proceedings of the 44th IEEE Conference on Decision and Control. Seville, Spain: IEEE Press, 2005: 7198-7203.
  • 9TRINH H, FERNANDO T, NAHACANDI S. Partial-state obvservers for nonlinear systems[ J]. IEEE Transactions on Au- tomatic Control, 2006, 51 ( 11 ) : 1808 -1812.
  • 10LAKSHMIKANTHAM V, BAINOV D D, SIMEONOV P S. Theory of impulsive differential equations [ M ]. Singapore: World Scientific Publishing, 1989.

共引文献19

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部