期刊文献+

去趋势波动分析在不同状态脑电信号中的应用 被引量:1

APPLICATION OF DETRENDED FLUCTUATION ALGORITHM IN DIFFERENT STATES OF EEG SIGNALS
下载PDF
导出
摘要 目的:验证去趋势波动分析法应用于脑电信号分析时的有效性。方法:使用去趋势波动分析算法分析不同状态下的脑电信号,把得到的标度指数值进行比较。结果:从心算状态、睁眼状态到闭目安静状态的标度指数越来越大,这表明从心算状态、睁眼状态到闭目安静状态下脑的动力学活性越来越低,并且在时间上具有长程相关性。结论:去趋势波动分析方法在探索不同脑功能状态下EEG的标度指数是否具有显著性差异有一定的价值。 Objective: To proof validity of detrended fluctuation algorithm(DFA)in analysis of EEG signals. Methods: EEG signals of different states were analyzed by DFA and these scaling exponents were compared. Results: The scaling exponents gradually increased from making additive operation、opening eyes to closing eyes, which tells that the dynamics of brain became less activated as the scaling exponents increase.Conclusion: The DFA could be used for discriminate different states of brain function.
作者 胡叶容
出处 《现代电生理学杂志》 2015年第4期211-215,共5页 Journal of Modern Electrophysiology
基金 东莞职业技术学院院级专项项目(2013b01)
关键词 去趋势波动分析方法 脑电信号 标度指数 detrended fluctuation algorithm electroencephalogram scaling exponent
  • 相关文献

参考文献10

  • 1Viswanathan GM, Peng CK, Stanley HE, et al. Deviations from uniform power law scaling in nonstationary time series. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics, 1997, 55(1): 845 - 849.
  • 2Ivanov PC, Rosenblum MG, Peng CK, et al. Scaling behavior of heartbeat intervals obtained by wavelet-based time-series analysis. Nature, 1996, 383(6598) : 323 - 327.
  • 3B.B. Mandelbrot.The Fractal Geometry of Nature, Freeman, San Francisco, CA, 1982.
  • 4Pentland AP. Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Machine Intell. 1984, 6(6) : 661 - 674.
  • 5Peng CK, Havlin S, Stanley HE, et al. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995, 5 (1) 82 - 87.
  • 6Peng C-K, Buldyrev SV, Goldberger AL, et al. Finite-size efforts on long-range correlations: implications for analyzing DNA sequences. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1993, 47(5): 3730 - 3733.
  • 7E.W. Montroll, M.F. Shlesinger, in: J.L. Lebowitz,E.W. Montroll (Eds.), Nonequilibrium Phenomena II. From Stochastics to Hydrodynamics North-Holland, Amsterdam, 1984, 1 - 121.
  • 8P.Bak,C. Tang, K. Wiesenfeld. Phys.Rev.Lett, 1987,59:381 - 384.
  • 9S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, H.E Stanley. in: A. Bunde,S. Havlin (Eds.). Fractals in Science Springer, Berlin. 1994, 48 - 87.
  • 10M.S. Keshner. 1/f noise, Proc[J]. IEEE, 1982,70 : 212 - 218.

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部