期刊文献+

基于PSODACCIW-VPMCD的滚动轴承智能检测方法 被引量:3

An intelligent detection method for rolling bearings based on PSODACCIW-VPMCD
下载PDF
导出
摘要 针对VPMCD中模型选择方法的不合理和小样本多分类时识别率降低的缺陷,结合动态加速常数协同惯性权重的粒子群(Particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight,PSODACCIW)算法的全局优化能力和加权融合理论,提出基于PSODACCIW-VPMCD的滚动轴承智能检测方法。首先对样本提取特征变量,然后采用PSODACCIW算法优化诊断融合权值矩阵,最后对滚动轴承的故障类型和工作状态进行分类和识别。实验结果表明,该方法能够有效地应用于滚动轴承的智能检测中。 Aiming at the unreasonable model selection method and the defect of lower recognition rate for smaller samples and multi-classification,combining the global optimization ability of the particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight( PSODACCIW) algorithm and the weighted fusion theory,an intelligent detection method for rolling bearings based on PSODACCIW-VPMCD was put forward. Firstly, the characteristic variables of samples were extracted,then the PSODACCIW algorithm was used to optimize the diagnosis fusion weighting matrix. Finally,the operation status and fault pattern of rolling bearings were classified and identified.The test results showed that the proposed method can be applied in o rolling bearing intelligent detection effectively.
出处 《振动与冲击》 EI CSCD 北大核心 2015年第23期42-47,共6页 Journal of Vibration and Shock
基金 国家自然科学基金(51175158 51075131) 湖南省自然科学基金(11JJ2026)
关键词 动态加速常数协同惯性权重的粒子群算法(PSODACCIW) 基于变量预测模型的模式识别(VPMCD) 加权融合 滚动轴承 智能检测 particle swarm optimization with dynamic accelerating constant and coordinating with inertia weight(PSODACCIW) variable predictive model-based class discriminate(VPMCD) weighted fusion rolling bearing intelligent detection
  • 相关文献

参考文献11

  • 1Wang Hua-qing, Chen Peng. Intelligent diagnosis method for rolling element bearing faults using possibility theory and neural network [ J ]. Computer & Industrial Engineering, 2011, 60(4) : 511 -518.
  • 2Fei Sheng-wei, Zhang Xiao-hin. Fault diagnosis of power transformer based on support vector machine with genetic algorithm [ J ]. Expert Systems with Applications, 2009, 36(8) :11352 - 11357.
  • 3Raghuraj R, Lakshminarayanan S. Variable predictive models:a new multivariate classification approach for pattern recognition applications [ J ]. Pattern Recognition, 2009, 42(1) :7 -16.
  • 4Raghuraj R, Lakshminarayanan S. Variable predictive model based classification algorithm for effective separation of protein structural classes [ J ]. Computational Biology and Chemistry, 2008, 32 (4) :302 - 306.
  • 5Wang Hua-qing, Chen Peng. Intelligent diagnosis method for rolling element bearing faults using possibility theory andneural network [ J ]. Computer & Industrial Engineering, 2011, 60(4): 511 -518.
  • 6刘芬,潘宏侠.WCPSO优化的小波神经网络在传动箱故障诊断中的应用[J].噪声与振动控制,2011,31(5):146-149. 被引量:8
  • 7Bocaniala C D, Sa da Costa J L. Tuning the parameters of a classifier for fault diagnosis-particle swarm optimization vs genetic algorithms [ J]. ICINCO ,2004( 1 ) : 157 - 162.
  • 8Eunju Kim, Wooju Kim, Yillbyung Lee. Combination of multiple classifiers for the customer's purchase behavior prediction [ J ]. Decision Support Systems, 2002, 34:167 - 175.
  • 9刘占生,窦唯,王东华,王晓伟.基于遗传算法的旋转机械故障诊断方法融合[J].机械工程学报,2007,43(10):227-233. 被引量:28
  • 10程军圣,郑近德,杨宇.一种新的非平稳信号分析方法——局部特征尺度分解法[J].振动工程学报,2012,25(2):215-220. 被引量:170

二级参考文献35

  • 1张敬芬,孟光,赵德有.基于模糊神经网络的薄板不同指标裂纹诊断[J].机械工程学报,2006,42(3):145-149. 被引量:10
  • 2潘宏侠,魏秀业,马清峰.粒子群优化算法在传动箱故障诊断中的应用[J].火炮发射与控制学报,2006,27(4):54-58. 被引量:4
  • 3Huang N E,Zheng Shen,Long S R,et al.Theempirical mode decomposition and the Hilbertspectrum for nonlinear and non-stationary time seriesanalysis[A].Proc.Roy.Soc[C].London,1998,454:903-995.
  • 4Huang N E,Wu Z.A review on Hilbert-Huangtransform:method and its applications to geophysicalstudies[J].Adv.Adapt.Data Anal.,2009,1:1-23.
  • 5Huang N E,Shen Z,Long R S.A new view ofnonlinear water waves-the Hilbert spectrum[J],Ann.Rev.Fluid Mech.,1999,31:417-457.
  • 6Khaldi K,Boudraa A O,Bouchikhi A,et al.Speechsignal noise vdmction by EMD[A].IEEEInternational Symposium on Communications,Controland SignalProcessing ISCCSP 2008,St.Julians,Malta,2008:1 155-1 158.
  • 7Dejie Yu,Junsheng Cheng,Yu Yang.Application ofEMD method and Hilbert spectrum to the faultdiagnosis of roller bearings[J].Mechanical Systemsand Signal Processing,2005,19:259-270.
  • 8Guanghong Gai.The processing of rotor startupsignals based on empirical mode decomposition[J].Mechanical Systems and Signal Processing,2006,20:225-235.
  • 9Yuesheng Xu,Haizhang Zhang.Recent mathematicaldevelopments on empirical mode decomposition[J].Advances in Adaptive Data Analysis.2009,1(4):681-702.
  • 10洪弘 王新龙 陶智勇.一种新的EMD迭代算法.声学技术,2008,27(5):432-433.

共引文献201

同被引文献21

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部