期刊文献+

线性约束变分不等式的LQP算法 被引量:1

LQP-Based Methods for a Class of Linearly Constrained Variational Inequalities
原文传递
导出
摘要 将一类具有线性约束的变分不等式问题转换为等价的非线性互补问题,在证明了构成函数的单调性等性质后,结合LQP算法,提出相应的基于LQP的算法,并通过预估校正及对校正步长采取新的策略,给出了改进形式的两个算法. As Variational Inequalities(VIs)have a close relationship with complementarity problems,and the well-known logarithmic-quadratic proximal(LQP)method has motivated a number of efficient numerical algorithms for solving nonlinear complementarity problems(NCPs),we try to translate a class of constrained variational inequalities into NCP,and apply some LQP-based method is to solve it.
出处 《武汉大学学报(理学版)》 CAS CSCD 北大核心 2015年第6期585-588,共4页 Journal of Wuhan University:Natural Science Edition
基金 国家自然科学基金资助项目(71231007)
关键词 线性约束变分不等式 LQP算法 非线性互补问题 constrained variational inequalities logarithmic-quadratic proximal method nonlinear complementarity problems
  • 相关文献

参考文献1

二级参考文献17

  • 1A. Auslender and M. Haddou, An interior proximal point method for convex linearly constrained problems and its extension to variational inequalities, Math. Programming, 71 (1995), 77-100.
  • 2A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic proximal method for variational inequalities, Comput. Optim. Appl., 12 (1999), 31-40.
  • 3A. Auslender and M. Teboulle, Lagrangian duality and related multiplier methods for variational inequality problems, SIAM J. Optim., 10:4 (2000), 1097-1115.
  • 4R. S. Burachik and A. N. Iusem, A generalized proximal point alogrithm for the variational inequality problem in a Hilbert space, SIAM J. Optim., 8 (1998), 197-216.
  • 5Y. Censor, A. N. Iusem and S. A. Zenios, An interior-point method with Bregman functions for the variational inequality problem with paramonotone operators, Working paper, University of Haifa, 1994.
  • 6J. Eckstein, Approximate iterations in Bregman-function-based proximal algorithms, Math. Programming, 83 (1998), 113-123.
  • 7M. C. Ferris and J.-S. Pang, Engineering and economic applications of complementarity problems,SIAM Rev., 39 (1997), 669-713.
  • 8A. Fischer, Solution of monotone complementarity problems with locally Lipschitzian functions,Math. Programming, 76 (1997), 513-532.
  • 9O. Gfiler, On the convergence of the proximal point algorithm for convex minimization, SlAM J.Con. Optim., 29 (1991), 403-419.
  • 10B. S. He, Inexact implicit methods for monotone general variational inequalities, Math. Programming, 86 (1999), 199-217.

共引文献4

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部