期刊文献+

Concentric Circular Approach in Mesoporous Silica Transition Process from Hexagonal to Vesicular Structure

Concentric Circular Approach in Mesoporous Silica Transition Process from Hexagonal to Vesicular Structure
原文传递
导出
摘要 We studied the synthesis of mesoporous silica from cetyltrimethyl ammonium bromide(CTAB) and so- dium dodecyl sulfate(SDS) at different molar ratios(R). X-ray diffraction(XRD), scanning electron spectroscopy (SEM), transmission electron spectroscopy(TEM) and nitrogen sorption analysis were then used to further investigate the internal relationship among different morphologies and structures, as well as the mechanism of the transition from hexagonal to vesicular structure. The results reveal that as R increased, a consistent and gradual transition occurred via a concentric circular secondary structure formed. The antagonistic effect between the decreasing curvature of surfactant micelle and increasing curvature of secondary structures may be the reason for the complex morphologies synthesized, and the increasing bending energy AGb is the main driving force for the transition. We studied the synthesis of mesoporous silica from cetyltrimethyl ammonium bromide(CTAB) and so- dium dodecyl sulfate(SDS) at different molar ratios(R). X-ray diffraction(XRD), scanning electron spectroscopy (SEM), transmission electron spectroscopy(TEM) and nitrogen sorption analysis were then used to further investigate the internal relationship among different morphologies and structures, as well as the mechanism of the transition from hexagonal to vesicular structure. The results reveal that as R increased, a consistent and gradual transition occurred via a concentric circular secondary structure formed. The antagonistic effect between the decreasing curvature of surfactant micelle and increasing curvature of secondary structures may be the reason for the complex morphologies synthesized, and the increasing bending energy AGb is the main driving force for the transition.
出处 《Chemical Research in Chinese Universities》 SCIE CAS CSCD 2015年第6期904-908,共5页 高等学校化学研究(英文版)
关键词 Mesoporous material Cationic-anionic surfactant Structural transition SILICA SELF-ASSEMBLY Mesoporous material Cationic-anionic surfactant Structural transition Silica Self-assembly
  • 相关文献

参考文献27

  • 1Kresge C. T., Leonowicz M. E., Roth W. J., Vartuli, J. C., Beck J. S., Nature, 1992, 359(6397), 710.
  • 2Beck J. S., Vartuli J. C., Roth W. J., Leonowicz M. E., Kresge C. T., Schmitt K. D., Chu T. W., Olson D. H., Sheppard E. W., McCullen S. B., Higgins J. B., Schlenker J. L., J. Am. Chem. Soc., 1992, 114(27), 10834.
  • 3Song S. W., Hidajat K., Kawi S., Langmuir, 2005, 2l(21), 9568.
  • 4Huh S., Chen H. T., Wiench J. W., Pruski M., Lin V. S. Y., J. Am. Chem. Soc., 2004, 126(4), 1010.
  • 5Mal N. K., Fujiwara M., Tanaka Y.,Taguchi T., Matsukata M., Chem. Mat., 2003, 15(17), 3385.
  • 6De Vos D. E., Dams M., Sels B. F., Jacobs E A., Chem. Rev., 2002, 102(10), 3615.
  • 7Djojoputro H., Zhou X. E, Qiao S. Z.,Wang L. Z., Yu C. Z., Lu G. Q., J. Am. Chem. Soc., 2006, 128(19), 6320.
  • 8Moreau J. J., Vellutini L., Chi Man M. W., Bied C., Bantignies J. L., Dieudonn~ P., Sauvajol J. L., A Am. Chem. Soc., 2001, 123(32), 7957.
  • 9Tang D., Zhang W., Wang ~L, Miao J., Qiao Z., Huo Q., Zhang L., Chem. Res. Chinese Universities, 2014, 30(4), 531.
  • 10Li X., Zuo W., Luo M., Shi Z., Cui Z., Zhu S., Chem. Res. Chinese Universities, 2013, 29(6), 1214.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部