Markov cellular automata models for chronic disease progression
Markov cellular automata models for chronic disease progression
摘要
We analyze a Markov cellular automaton that models the spread of viruses that often progress to a chronic condition, such as human immunodeficiency virus (HIV) or hep- atitis C virus (HCV). We show that the complex dynamical system produces a Markov process at the later stages, whose eigenvectors corresponding to the eigenvalue 1 have physical significance for the long-term prognosis of the virus. Moreover we show that drug treatment leads to chronic conditions that can be modeled by Markov shifts with more optimal eigenveetors.
参考文献37
-
1E. Burkhead, J. Hawkins and D. Molinek, A dynamical study of a cellular automata model of the spread of HIV in a lymph node, Bull. Math. Biol. 71(1) (2009) 25-74.
-
2Center for Disease Control, Hepatitis C, http://www.cdc.gov/hepatitis/HCV/index. htm.
-
3S. Deeks et al., Immune activation set point during early HIV infection predicts subsequent CD4 T-cell changes independent of viral load, Blood 104(4) (2004) 942- 947.
-
4R. De Francesco and G. Migliaccio, Challenges and successes in developing new ther- apies for hepatitis C, Nature 436 (2005) 953 960.
-
5J. Doorbar, Molecular biology of human papilloma virus infection and cervical cancer, Clin. Sei. 110 (2006) 525-541.
-
6R. Gonzalez, S. Coutinho, R. dos Santos and P. de Figueirdo, Dynamics of the HIV infection under antiretroviral therapy: A cellular automata approach, Phys. A 392 (2013) 4701-4716.
-
7R. Gonzlez, P. de Figueirdo and S. Coutinho, Cellular automata approach for the dynamics of HIV infection under antiretroviral therapies: The role of the virus diffu- sion, Phys. A 392 (2013) 4716-4725.
-
8F. Craw and A. Perelson, Spatial aspects of HIV infection, in Mathematical Methods and Models in Biomedicine, Lecture Notes on Mathematical Modeling in the Life Sciences (Springer, New York, 2013).
-
9J. Guedj et al., A perspective on modeling hepatitis C virus infection, J. Viral Hepat. 17(12) (2010) 825-833.
-
10A. T. Hasse, Population biology of HIV-1 infection: Viral and CD4+ T-cell demo- graphics and dynamics in lymphatic tissues, Ann. Rev. Immunol. 17 (1999) 625-656.
-
1葛军,张军.佛山市干日、雨日持续日数概率的预报试验[J].气象科学,1999,19(2):190-195.
-
2陈炬桦,邹秀芬.卡门涡街的细胞自动机模拟[J].华东地质学院学报,1995,18(4):361-365.
-
3杨瑜.一类具有时滞的HIV-1感染模型[J].上海交通大学学报,2010,44(6):855-858.
-
4朱辉.调和级数的奇妙特性[J].渤海大学学报(自然科学版),1997,22(1):52-54. 被引量:1
-
5PRITI KUMAR ROY,SONIA CHOWDHURY,XUE-ZHI LI.SATURATION EFFECTS FOR CTL MEDIATED CONTROL OF HIV-1 INFECTION: A MATHEMATICAL STUDY[J].International Journal of Biomathematics,2013,6(3):33-51. 被引量:2
-
6李树芳,贾春长.河南省地方病与环境地质(摘要)[J].地域研究与开发,1989,8(S1):26-26.
-
7刘劲松,许云,乌达巴拉,刘福田,郝天珧.细胞自动机用于地震偏移:数值模拟试验[J].地球物理学进展,2004,19(3):621-624. 被引量:6
-
8超级晃问.升级你的健康“应变力”[J].家庭生活指南,2012(12):51-51.
-
9陆远忠,吕悦军.带断层的细胞自动机模型及算法复杂性[J].地震学报,1994,16(2):183-189. 被引量:15
-
10“盐酸川丁特罗”的研究开发[J].中国科技成果,2008,9(11):55-55.